- -

Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Di Prima, Simone es_ES
dc.contributor.author Bagarello, Vincenzo es_ES
dc.contributor.author Lassabatere, Laurent es_ES
dc.contributor.author Angulo-Jaramillo, Rafael es_ES
dc.contributor.author Bautista, Inmaculada es_ES
dc.contributor.author Burguet, Maria es_ES
dc.contributor.author Cerda, Artemi es_ES
dc.contributor.author Iovino, Massimo es_ES
dc.contributor.author Prodoscimi, Massimo es_ES
dc.date.accessioned 2020-09-12T03:34:34Z
dc.date.available 2020-09-12T03:34:34Z
dc.date.issued 2017-09-30 es_ES
dc.identifier.issn 0885-6087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149938
dc.description.abstract [EN] Saturated soil hydraulic conductivity, K-s, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The K-s values determined by an infiltrometer experiment carried out by applying water at a relatively large distance from the soil surface could however be more appropriate to explain surface runoff generation phenomena during intense rainfall events. In this study, a link between rainfall simulation and ponding infiltrometer experiments was established for a sandy-loam soil. The height of water pouring for the infiltrometer run was chosen, establishing a similarity between the gravitational potential energy of the applied water, E-p, and the rainfall kinetic energy, E-k. To test the soundness of this procedure, the soil was sampled with the Beerkan estimation of soil transfer parameters procedure of soil hydraulic characterization and two heights of water pouring (0.03m, i.e., usual procedure, and 0.34m, yielding E-p=E-k). Then, a comparison between experimental steady-state infiltration rates, i(sR), measured with rainfall simulation experiments determining runoff production and K-s values for the two water pouring heights was carried out in order to discriminate between theoretically possible (i(sR)K(s)) and impossible (i(sR)<K-s) situations. Physically possible K-s values were only obtained by applying water at a relatively large distance from the soil surface, because i(sR) was equal to 20.0mmh(-1) and K-s values were 146.2-163.9 and 15.2-18.7mmh(-1) for a height of water pouring of 0.03 and 0.34m, respectively. This result suggested the consistency between Beerkan runs with a high height of water pouring and rainfall simulator experiments. Soil compaction and mechanical aggregate breakdown were the most plausible physical mechanisms determining reduction of K-s with height. This study demonstrated that the height from which water is poured onto the soil surface is a key parameter in infiltrometer experiments and can be adapted to mimic the effect of high intensity rain on soil hydraulic properties. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007 2013) under grant agreement 603498 (RECARE project) and from the Università degli Studi di Palermo (Dottorato di Ricerca in Sistemi Agro-Ambientali, indirizzo Idronomia Ambientale). The authors also thank N. Pradetto Sordo for her assistance in the field activity. S.D.P. also thanks I.A., B.F., and A.H. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Hydrological Processes es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Beerkan infiltration es_ES
dc.subject Height of water application es_ES
dc.subject Rainfall simulation es_ES
dc.subject Runoff es_ES
dc.subject Saturated soil hydraulic conductivity es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hyp.11273 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/603498/EU/Preventing and Remediating degradation of soils in Europe through Land Care/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Di Prima, S.; Bagarello, V.; Lassabatere, L.; Angulo-Jaramillo, R.; Bautista, I.; Burguet, M.; Cerda, A.... (2017). Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil. Hydrological Processes. 31(20):3520-3532. https://doi.org/10.1002/hyp.11273 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/hyp.11273 es_ES
dc.description.upvformatpinicio 3520 es_ES
dc.description.upvformatpfin 3532 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\343655 es_ES
dc.contributor.funder Università degli Studi di Palermo es_ES
dc.description.references Aiello, R., Bagarello, V., Barbagallo, S., Consoli, S., Di Prima, S., Giordano, G., & Iovino, M. (2014). An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma, 235-236, 300-307. doi:10.1016/j.geoderma.2014.07.024 es_ES
dc.description.references Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., & Iovino, M. (2016). Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24-33. doi:10.1016/j.geoderma.2015.12.029 es_ES
dc.description.references Alagna, V., Bagarello, V., Di Prima, S., & Iovino, M. (2015). Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrological Processes, 30(2), 263-275. doi:10.1002/hyp.10607 es_ES
dc.description.references Angulo-Jaramillo, R., Bagarello, V., Iovino, M., & Lassabatere, L. (2016). Infiltration Measurements for Soil Hydraulic Characterization. doi:10.1007/978-3-319-31788-5 es_ES
dc.description.references Bagarello, V., Castellini, M., Di Prima, S., & Iovino, M. (2014). Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492-501. doi:10.1016/j.geoderma.2013.08.032 es_ES
dc.description.references Bagarello, V., Di Prima, S., & Iovino, M. (2014). Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal, 78(3), 724-736. doi:10.2136/sssaj2013.06.0231 es_ES
dc.description.references Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., & Sgroi, A. (2011). Testing different approaches to characterize Burundian soils by the BEST procedure. Geoderma, 162(1-2), 141-150. doi:10.1016/j.geoderma.2011.01.014 es_ES
dc.description.references Bagarello, V., Stefano, C. D., Ferro, V., Iovino, M., & Sgroi, A. (2010). Physical and hydraulic characterization of a clay soil at the plot scale. Journal of Hydrology, 387(1-2), 54-64. doi:10.1016/j.jhydrol.2010.03.029 es_ES
dc.description.references Bagarello, V., Di Stefano, C., Iovino, M., & Sgroi, A. (2012). Using a transient infiltrometric technique for intensively sampling field-saturated hydraulic conductivity of a clay soil in two runoff plots. Hydrological Processes, 27(24), 3415-3423. doi:10.1002/hyp.9448 es_ES
dc.description.references Bagarello, V., & Iovino, M. (2012). Testing the BEST procedure to estimate the soil water retention curve. Geoderma, 187-188, 67-76. doi:10.1016/j.geoderma.2012.04.006 es_ES
dc.description.references Bagarello, V., Iovino, M., & Elrick, D. (2004). A Simplified Falling-Head Technique for Rapid Determination of Field-Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 68(1), 66-73. doi:10.2136/sssaj2004.6600 es_ES
dc.description.references Bhardwaj, A., & Singh, R. (1992). Development of a portable rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management, 22(3), 235-248. doi:10.1016/0378-3774(92)90028-u es_ES
dc.description.references Bodhinayake, W., Si, B. C., & Noborio, K. (2004). Determination of Hydraulic Properties in Sloping Landscapes from Tension and Double-Ring Infiltrometers. Vadose Zone Journal, 3(3), 964-970. doi:10.2136/vzj2004.0964 es_ES
dc.description.references Bouma, J. (1982). Measuring the Hydraulic Conductivity of Soil Horizons with Continuous Macropores. Soil Science Society of America Journal, 46(2), 438-441. doi:10.2136/sssaj1982.03615995004600020047x es_ES
dc.description.references Bowyer-Bower, T. A. S., & Burt, T. P. (1989). Rainfall simulators for investigating soil response to rainfall. Soil Technology, 2(1), 1-16. doi:10.1016/s0933-3630(89)80002-9 es_ES
dc.description.references D. L. Brakensiek, & W. J. Rawls. (1983). Agricultural Management Effects on Soil Water Processes Part II: Green and Ampt Parameters for Crusting Soils. Transactions of the ASAE, 26(6), 1753-1757. doi:10.13031/2013.33838 es_ES
dc.description.references Brooks RH Corey T 1964 Hydraulic properties of porous media Hydrol. Paper 3., Colorado State University, Fort Collins. es_ES
dc.description.references Carsel, R. F., & Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24(5), 755-769. doi:10.1029/wr024i005p00755 es_ES
dc.description.references Cassinari, C., Manfredi, P., Giupponi, L., Trevisan, M., & Piccini, C. (2015). Relationship between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy). Solid Earth, 6(3), 929-943. doi:10.5194/se-6-929-2015 es_ES
dc.description.references Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69(3-4), 217-232. doi:10.1016/0016-7061(95)00062-3 es_ES
dc.description.references Cerdà, A. (1997). Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology, 198(1-4), 209-225. doi:10.1016/s0022-1694(96)03295-7 es_ES
dc.description.references Cerdà, A. (1998). Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12(7), 1031-1042. doi:10.1002/(sici)1099-1085(19980615)12:7<1031::aid-hyp636>3.0.co;2-v es_ES
dc.description.references Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98wr01659 es_ES
dc.description.references Cerdà, A. (2000). Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil and Tillage Research, 57(3), 159-166. doi:10.1016/s0167-1987(00)00155-0 es_ES
dc.description.references Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.x es_ES
dc.description.references Cerdà, A., & Doerr, S. H. (2007). Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21(17), 2325-2336. doi:10.1002/hyp.6755 es_ES
dc.description.references Cerdà, A., Ibáñez, S., & Calvo, A. (1997). Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, 11(2), 163-170. doi:10.1016/s0933-3630(96)00135-3 es_ES
dc.description.references Di Prima, S. (2015). Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture, 118, 390-395. doi:10.1016/j.compag.2015.09.022 es_ES
dc.description.references Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. doi:10.1016/j.geoderma.2015.08.006 es_ES
dc.description.references Diodato, N., Verstraeten, G., & Bellocchi, G. (2012). DECADAL MODELLING OF RAINFALL EROSIVITY IN BELGIUM. Land Degradation & Development, 25(6), 511-519. doi:10.1002/ldr.2168 es_ES
dc.description.references Gee GW Bauder JW 1986 Particle-size analysis SSSA Book Series 383 411 es_ES
dc.description.references Haverkamp, R., Ross, P. J., Smettem, K. R. J., & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30(11), 2931-2935. doi:10.1029/94wr01788 es_ES
dc.description.references Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2013). Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area. Land Degradation & Development, 27(2), 200-210. doi:10.1002/ldr.2263 es_ES
dc.description.references Iserloh, T., Ries, J. B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., … Wirtz, S. (2013). European small portable rainfall simulators: A comparison of rainfall characteristics. CATENA, 110, 100-112. doi:10.1016/j.catena.2013.05.013 es_ES
dc.description.references Iserloh, T., Ries, J. B., Cerdà, A., Echeverría, M. T., Fister, W., Geißler, C., … Seeger, M. (2013). Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, Supplementary Issues, 57(1), 11-26. doi:10.1127/0372-8854/2012/s-00085 es_ES
dc.description.references Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., … Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of The Total Environment, 551-552, 357-366. doi:10.1016/j.scitotenv.2016.01.182 es_ES
dc.description.references B. A. King, & D. L. Bjorneberg. (2012). Transient Soil Surface Sealing and Infiltration Model for Bare Soil under Droplet Impact. Transactions of the ASABE, 55(3), 937-945. doi:10.13031/2013.41525 es_ES
dc.description.references Lado, M., Paz, A., & Ben-Hur, M. (2004). Organic Matter and Aggregate-Size Interactions in Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 68(1), 234-242. doi:10.2136/sssaj2004.2340 es_ES
dc.description.references Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J. P., Winiarski, T., & Delolme, C. (2010). Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156(3-4), 316-325. doi:10.1016/j.geoderma.2010.02.031 es_ES
dc.description.references Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Science Society of America Journal, 70(2), 521-532. doi:10.2136/sssaj2005.0026 es_ES
dc.description.references Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Šimůnek, J., & Haverkamp, R. (2009). Numerical evaluation of a set of analytical infiltration equations. Water Resources Research, 45(12). doi:10.1029/2009wr007941 es_ES
dc.description.references Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P. E., Lenoir, T., Šimůnek, J., & Angulo-Jaramillo, R. (2014). New Analytical Model for Cumulative Infiltration into Dual-Permeability Soils. Vadose Zone Journal, 13(12), vzj2013.10.0181. doi:10.2136/vzj2013.10.0181 es_ES
dc.description.references Lassu, T., Seeger, M., Peters, P., & Keesstra, S. D. (2015). The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degradation & Development, 26(6), 604-612. doi:10.1002/ldr.2360 es_ES
dc.description.references BISSONNAIS, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47(4), 425-437. doi:10.1111/j.1365-2389.1996.tb01843.x es_ES
dc.description.references Li, X.-Y., González, A., & Solé-Benet, A. (2005). Laboratory methods for the estimation of infiltration rate of soil crusts in the Tabernas Desert badlands. CATENA, 60(3), 255-266. doi:10.1016/j.catena.2004.12.004 es_ES
dc.description.references Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399-402. doi:10.1080/01621459.1967.10482916 es_ES
dc.description.references Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T., & Qu, L. Q. (2011). Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology, 396(1-2), 24-32. doi:10.1016/j.jhydrol.2010.10.028 es_ES
dc.description.references Mualem, Y., Assouline, S., & Rohdenburg, H. (1990). Rainfall induced soil seal (A) A critical review of observations and models. CATENA, 17(2), 185-203. doi:10.1016/0341-8162(90)90008-2 es_ES
dc.description.references Mubarak, I., Angulo-Jaramillo, R., Mailhol, J. C., Ruelle, P., Khaledian, M., & Vauclin, M. (2010). Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10), 1517-1526. doi:10.1016/j.agwat.2010.05.005 es_ES
dc.description.references Nunes, A. N., Lourenço, L., Vieira, A., & Bento-Gonçalves, A. (2014). Precipitation and Erosivity in Southern Portugal: Seasonal Variability and Trends (1950-2008). Land Degradation & Development, 27(2), 211-222. doi:10.1002/ldr.2265 es_ES
dc.description.references Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., & Cerdà, A. (2016). The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 323-330. doi:10.1016/j.scitotenv.2015.12.076 es_ES
dc.description.references Reynolds, W. D., Bowman, B. T., Brunke, R. R., Drury, C. F., & Tan, C. S. (2000). Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 64(2), 478-484. doi:10.2136/sssaj2000.642478x es_ES
dc.description.references Rockström, J., Jansson, P.-E., & Barron, J. (1998). Seasonal rainfall partitioning under runon and runoff conditions on sandy soil in Niger. On-farm measurements and water balance modelling. Journal of Hydrology, 210(1-4), 68-92. doi:10.1016/s0022-1694(98)00176-0 es_ES
dc.description.references Shainberg, I., & Singer, M. J. (1988). Drop Impact Energy-Soil Exchangeable Sodium Percentage Interactions in Seal Formation. Soil Science Society of America Journal, 52(5), 1449-1452. doi:10.2136/sssaj1988.03615995005200050046x es_ES
dc.description.references Shaver, T. M., Peterson, G. A., Ahuja, L. R., & Westfall, D. G. (2013). Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma, 192, 254-258. doi:10.1016/j.geoderma.2012.08.014 es_ES
dc.description.references Somaratne, N. M., & Smettem, K. R. J. (1993). Effect of cultivation and raindrop impact on the surface hydraulic properties of an Alfisol under wheat. Soil and Tillage Research, 26(2), 115-125. doi:10.1016/0167-1987(93)90038-q es_ES
dc.description.references Souza, E. S., Antonino, A. C. D., Heck, R. J., Montenegro, S. M. G. L., Lima, J. R. S., Sampaio, E. V. S. B., … Vauclin, M. (2014). Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil. Soil and Tillage Research, 141, 55-61. doi:10.1016/j.still.2014.04.004 es_ES
dc.description.references Tricker, A. S. (1979). The design of a portable rainfall simulator infiltrometer. Journal of Hydrology, 41(1-2), 143-147. doi:10.1016/0022-1694(79)90111-2 es_ES
dc.description.references Turner, R. K., van den Bergh, J. C. J. M., Söderqvist, T., Barendregt, A., van der Straaten, J., Maltby, E., & van Ierland, E. C. (2000). Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological Economics, 35(1), 7-23. doi:10.1016/s0921-8009(00)00164-6 es_ES
dc.description.references Van De Giesen, N. C., Stomph, T. J., & de Ridder, N. (2000). Scale effects of Hortonian overland flow and rainfall-runoff dynamics in a West African catena landscape. Hydrological Processes, 14(1), 165-175. doi:10.1002/(sici)1099-1085(200001)14:1<165::aid-hyp920>3.0.co;2-1 es_ES
dc.description.references Vandervaere, J.-P., Vauclin, M., Haverkamp, R., Peugeot, C., Thony, J.-L., & Gilfedder, M. (1998). PREDICTION OF CRUST-INDUCED SURFACE RUNOFF WITH DISC INFILTROMETER DATA. Soil Science, 163(1), 9-21. doi:10.1097/00010694-199801000-00003 es_ES
dc.description.references White, I., Sully, M. J., & Melville, M. D. (1989). Use and Hydrological Robustness of Time-to-Incipient-Ponding. Soil Science Society of America Journal, 53(5), 1343-1346. doi:10.2136/sssaj1989.03615995005300050007x es_ES
dc.description.references Xu, X., Kiely, G., & Lewis, C. (2009). Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods. Soil Use and Management, 25(4), 354-361. doi:10.1111/j.1475-2743.2009.00218.x es_ES
dc.description.references Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone Journal, 9(1), 107. doi:10.2136/vzj2009.0039 es_ES
dc.description.references YOUNGS, E. G. (1987). Estimating hydraulic conductivity values from ring infiltrometer measurements. Journal of Soil Science, 38(4), 623-632. doi:10.1111/j.1365-2389.1987.tb02159.x es_ES
dc.description.references Zimmermann, A., Schinn, D. S., Francke, T., Elsenbeer, H., & Zimmermann, B. (2013). Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flow-controlled landscape. Geoderma, 195-196, 1-11. doi:10.1016/j.geoderma.2012.11.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem