- -

Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

Mostrar el registro completo del ítem

Di Prima, S.; Bagarello, V.; Lassabatere, L.; Angulo-Jaramillo, R.; Bautista, I.; Burguet, M.; Cerda, A.... (2017). Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil. Hydrological Processes. 31(20):3520-3532. https://doi.org/10.1002/hyp.11273

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149938

Ficheros en el ítem

Metadatos del ítem

Título: Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil
Autor: Di Prima, Simone Bagarello, Vincenzo Lassabatere, Laurent Angulo-Jaramillo, Rafael Bautista, Inmaculada Burguet, Maria Cerda, Artemi Iovino, Massimo Prodoscimi, Massimo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Saturated soil hydraulic conductivity, K-s, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall ...[+]
Palabras clave: Beerkan infiltration , Height of water application , Rainfall simulation , Runoff , Saturated soil hydraulic conductivity
Derechos de uso: Reserva de todos los derechos
Fuente:
Hydrological Processes. (issn: 0885-6087 )
DOI: 10.1002/hyp.11273
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/hyp.11273
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/603498/EU/Preventing and Remediating degradation of soils in Europe through Land Care/
Agradecimientos:
The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007 2013) under grant agreement 603498 (RECARE project) and from the Università degli Studi di Palermo ...[+]
Tipo: Artículo

References

Aiello, R., Bagarello, V., Barbagallo, S., Consoli, S., Di Prima, S., Giordano, G., & Iovino, M. (2014). An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma, 235-236, 300-307. doi:10.1016/j.geoderma.2014.07.024

Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., & Iovino, M. (2016). Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24-33. doi:10.1016/j.geoderma.2015.12.029

Alagna, V., Bagarello, V., Di Prima, S., & Iovino, M. (2015). Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrological Processes, 30(2), 263-275. doi:10.1002/hyp.10607 [+]
Aiello, R., Bagarello, V., Barbagallo, S., Consoli, S., Di Prima, S., Giordano, G., & Iovino, M. (2014). An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma, 235-236, 300-307. doi:10.1016/j.geoderma.2014.07.024

Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., & Iovino, M. (2016). Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24-33. doi:10.1016/j.geoderma.2015.12.029

Alagna, V., Bagarello, V., Di Prima, S., & Iovino, M. (2015). Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrological Processes, 30(2), 263-275. doi:10.1002/hyp.10607

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., & Lassabatere, L. (2016). Infiltration Measurements for Soil Hydraulic Characterization. doi:10.1007/978-3-319-31788-5

Bagarello, V., Castellini, M., Di Prima, S., & Iovino, M. (2014). Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492-501. doi:10.1016/j.geoderma.2013.08.032

Bagarello, V., Di Prima, S., & Iovino, M. (2014). Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal, 78(3), 724-736. doi:10.2136/sssaj2013.06.0231

Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., & Sgroi, A. (2011). Testing different approaches to characterize Burundian soils by the BEST procedure. Geoderma, 162(1-2), 141-150. doi:10.1016/j.geoderma.2011.01.014

Bagarello, V., Stefano, C. D., Ferro, V., Iovino, M., & Sgroi, A. (2010). Physical and hydraulic characterization of a clay soil at the plot scale. Journal of Hydrology, 387(1-2), 54-64. doi:10.1016/j.jhydrol.2010.03.029

Bagarello, V., Di Stefano, C., Iovino, M., & Sgroi, A. (2012). Using a transient infiltrometric technique for intensively sampling field-saturated hydraulic conductivity of a clay soil in two runoff plots. Hydrological Processes, 27(24), 3415-3423. doi:10.1002/hyp.9448

Bagarello, V., & Iovino, M. (2012). Testing the BEST procedure to estimate the soil water retention curve. Geoderma, 187-188, 67-76. doi:10.1016/j.geoderma.2012.04.006

Bagarello, V., Iovino, M., & Elrick, D. (2004). A Simplified Falling-Head Technique for Rapid Determination of Field-Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 68(1), 66-73. doi:10.2136/sssaj2004.6600

Bhardwaj, A., & Singh, R. (1992). Development of a portable rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management, 22(3), 235-248. doi:10.1016/0378-3774(92)90028-u

Bodhinayake, W., Si, B. C., & Noborio, K. (2004). Determination of Hydraulic Properties in Sloping Landscapes from Tension and Double-Ring Infiltrometers. Vadose Zone Journal, 3(3), 964-970. doi:10.2136/vzj2004.0964

Bouma, J. (1982). Measuring the Hydraulic Conductivity of Soil Horizons with Continuous Macropores. Soil Science Society of America Journal, 46(2), 438-441. doi:10.2136/sssaj1982.03615995004600020047x

Bowyer-Bower, T. A. S., & Burt, T. P. (1989). Rainfall simulators for investigating soil response to rainfall. Soil Technology, 2(1), 1-16. doi:10.1016/s0933-3630(89)80002-9

D. L. Brakensiek, & W. J. Rawls. (1983). Agricultural Management Effects on Soil Water Processes Part II: Green and Ampt Parameters for Crusting Soils. Transactions of the ASAE, 26(6), 1753-1757. doi:10.13031/2013.33838

Brooks RH Corey T 1964 Hydraulic properties of porous media Hydrol. Paper 3., Colorado State University, Fort Collins.

Carsel, R. F., & Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24(5), 755-769. doi:10.1029/wr024i005p00755

Cassinari, C., Manfredi, P., Giupponi, L., Trevisan, M., & Piccini, C. (2015). Relationship between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy). Solid Earth, 6(3), 929-943. doi:10.5194/se-6-929-2015

Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69(3-4), 217-232. doi:10.1016/0016-7061(95)00062-3

Cerdà, A. (1997). Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology, 198(1-4), 209-225. doi:10.1016/s0022-1694(96)03295-7

Cerdà, A. (1998). Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12(7), 1031-1042. doi:10.1002/(sici)1099-1085(19980615)12:7<1031::aid-hyp636>3.0.co;2-v

Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98wr01659

Cerdà, A. (2000). Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil and Tillage Research, 57(3), 159-166. doi:10.1016/s0167-1987(00)00155-0

Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.x

Cerdà, A., & Doerr, S. H. (2007). Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21(17), 2325-2336. doi:10.1002/hyp.6755

Cerdà, A., Ibáñez, S., & Calvo, A. (1997). Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, 11(2), 163-170. doi:10.1016/s0933-3630(96)00135-3

Di Prima, S. (2015). Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture, 118, 390-395. doi:10.1016/j.compag.2015.09.022

Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. doi:10.1016/j.geoderma.2015.08.006

Diodato, N., Verstraeten, G., & Bellocchi, G. (2012). DECADAL MODELLING OF RAINFALL EROSIVITY IN BELGIUM. Land Degradation & Development, 25(6), 511-519. doi:10.1002/ldr.2168

Gee GW Bauder JW 1986 Particle-size analysis SSSA Book Series 383 411

Haverkamp, R., Ross, P. J., Smettem, K. R. J., & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30(11), 2931-2935. doi:10.1029/94wr01788

Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2013). Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area. Land Degradation & Development, 27(2), 200-210. doi:10.1002/ldr.2263

Iserloh, T., Ries, J. B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., … Wirtz, S. (2013). European small portable rainfall simulators: A comparison of rainfall characteristics. CATENA, 110, 100-112. doi:10.1016/j.catena.2013.05.013

Iserloh, T., Ries, J. B., Cerdà, A., Echeverría, M. T., Fister, W., Geißler, C., … Seeger, M. (2013). Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, Supplementary Issues, 57(1), 11-26. doi:10.1127/0372-8854/2012/s-00085

Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., … Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of The Total Environment, 551-552, 357-366. doi:10.1016/j.scitotenv.2016.01.182

B. A. King, & D. L. Bjorneberg. (2012). Transient Soil Surface Sealing and Infiltration Model for Bare Soil under Droplet Impact. Transactions of the ASABE, 55(3), 937-945. doi:10.13031/2013.41525

Lado, M., Paz, A., & Ben-Hur, M. (2004). Organic Matter and Aggregate-Size Interactions in Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 68(1), 234-242. doi:10.2136/sssaj2004.2340

Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J. P., Winiarski, T., & Delolme, C. (2010). Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156(3-4), 316-325. doi:10.1016/j.geoderma.2010.02.031

Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Science Society of America Journal, 70(2), 521-532. doi:10.2136/sssaj2005.0026

Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Šimůnek, J., & Haverkamp, R. (2009). Numerical evaluation of a set of analytical infiltration equations. Water Resources Research, 45(12). doi:10.1029/2009wr007941

Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P. E., Lenoir, T., Šimůnek, J., & Angulo-Jaramillo, R. (2014). New Analytical Model for Cumulative Infiltration into Dual-Permeability Soils. Vadose Zone Journal, 13(12), vzj2013.10.0181. doi:10.2136/vzj2013.10.0181

Lassu, T., Seeger, M., Peters, P., & Keesstra, S. D. (2015). The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degradation & Development, 26(6), 604-612. doi:10.1002/ldr.2360

BISSONNAIS, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47(4), 425-437. doi:10.1111/j.1365-2389.1996.tb01843.x

Li, X.-Y., González, A., & Solé-Benet, A. (2005). Laboratory methods for the estimation of infiltration rate of soil crusts in the Tabernas Desert badlands. CATENA, 60(3), 255-266. doi:10.1016/j.catena.2004.12.004

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399-402. doi:10.1080/01621459.1967.10482916

Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T., & Qu, L. Q. (2011). Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology, 396(1-2), 24-32. doi:10.1016/j.jhydrol.2010.10.028

Mualem, Y., Assouline, S., & Rohdenburg, H. (1990). Rainfall induced soil seal (A) A critical review of observations and models. CATENA, 17(2), 185-203. doi:10.1016/0341-8162(90)90008-2

Mubarak, I., Angulo-Jaramillo, R., Mailhol, J. C., Ruelle, P., Khaledian, M., & Vauclin, M. (2010). Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10), 1517-1526. doi:10.1016/j.agwat.2010.05.005

Nunes, A. N., Lourenço, L., Vieira, A., & Bento-Gonçalves, A. (2014). Precipitation and Erosivity in Southern Portugal: Seasonal Variability and Trends (1950-2008). Land Degradation & Development, 27(2), 211-222. doi:10.1002/ldr.2265

Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., & Cerdà, A. (2016). The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 323-330. doi:10.1016/j.scitotenv.2015.12.076

Reynolds, W. D., Bowman, B. T., Brunke, R. R., Drury, C. F., & Tan, C. S. (2000). Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 64(2), 478-484. doi:10.2136/sssaj2000.642478x

Rockström, J., Jansson, P.-E., & Barron, J. (1998). Seasonal rainfall partitioning under runon and runoff conditions on sandy soil in Niger. On-farm measurements and water balance modelling. Journal of Hydrology, 210(1-4), 68-92. doi:10.1016/s0022-1694(98)00176-0

Shainberg, I., & Singer, M. J. (1988). Drop Impact Energy-Soil Exchangeable Sodium Percentage Interactions in Seal Formation. Soil Science Society of America Journal, 52(5), 1449-1452. doi:10.2136/sssaj1988.03615995005200050046x

Shaver, T. M., Peterson, G. A., Ahuja, L. R., & Westfall, D. G. (2013). Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma, 192, 254-258. doi:10.1016/j.geoderma.2012.08.014

Somaratne, N. M., & Smettem, K. R. J. (1993). Effect of cultivation and raindrop impact on the surface hydraulic properties of an Alfisol under wheat. Soil and Tillage Research, 26(2), 115-125. doi:10.1016/0167-1987(93)90038-q

Souza, E. S., Antonino, A. C. D., Heck, R. J., Montenegro, S. M. G. L., Lima, J. R. S., Sampaio, E. V. S. B., … Vauclin, M. (2014). Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil. Soil and Tillage Research, 141, 55-61. doi:10.1016/j.still.2014.04.004

Tricker, A. S. (1979). The design of a portable rainfall simulator infiltrometer. Journal of Hydrology, 41(1-2), 143-147. doi:10.1016/0022-1694(79)90111-2

Turner, R. K., van den Bergh, J. C. J. M., Söderqvist, T., Barendregt, A., van der Straaten, J., Maltby, E., & van Ierland, E. C. (2000). Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological Economics, 35(1), 7-23. doi:10.1016/s0921-8009(00)00164-6

Van De Giesen, N. C., Stomph, T. J., & de Ridder, N. (2000). Scale effects of Hortonian overland flow and rainfall-runoff dynamics in a West African catena landscape. Hydrological Processes, 14(1), 165-175. doi:10.1002/(sici)1099-1085(200001)14:1<165::aid-hyp920>3.0.co;2-1

Vandervaere, J.-P., Vauclin, M., Haverkamp, R., Peugeot, C., Thony, J.-L., & Gilfedder, M. (1998). PREDICTION OF CRUST-INDUCED SURFACE RUNOFF WITH DISC INFILTROMETER DATA. Soil Science, 163(1), 9-21. doi:10.1097/00010694-199801000-00003

White, I., Sully, M. J., & Melville, M. D. (1989). Use and Hydrological Robustness of Time-to-Incipient-Ponding. Soil Science Society of America Journal, 53(5), 1343-1346. doi:10.2136/sssaj1989.03615995005300050007x

Xu, X., Kiely, G., & Lewis, C. (2009). Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods. Soil Use and Management, 25(4), 354-361. doi:10.1111/j.1475-2743.2009.00218.x

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone Journal, 9(1), 107. doi:10.2136/vzj2009.0039

YOUNGS, E. G. (1987). Estimating hydraulic conductivity values from ring infiltrometer measurements. Journal of Soil Science, 38(4), 623-632. doi:10.1111/j.1365-2389.1987.tb02159.x

Zimmermann, A., Schinn, D. S., Francke, T., Elsenbeer, H., & Zimmermann, B. (2013). Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flow-controlled landscape. Geoderma, 195-196, 1-11. doi:10.1016/j.geoderma.2012.11.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem