Mostrar el registro sencillo del ítem
dc.contributor.author | Periche Santamaría, Angela![]() |
es_ES |
dc.contributor.author | Castelló Gómez, María Luisa![]() |
es_ES |
dc.contributor.author | Heredia Gutiérrez, Ana Belén![]() |
es_ES |
dc.contributor.author | Escriche Roberto, Mª Isabel![]() |
es_ES |
dc.date.accessioned | 2020-09-12T03:34:46Z | |
dc.date.available | 2020-09-12T03:34:46Z | |
dc.date.issued | 2016-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149945 | |
dc.description.abstract | [EN] Different drying methods (hot air drying, freeze drying and shade drying) were evaluated to discern the optimal conditions for the preservation of flavonoid, phenolic and volatile compounds in stevia leaves. All the methods applied affected the antioxidant and volatile compounds in dried stevia leaves differently. 2-Hexenal, hexanal and -pinene were the most abundant volatile compounds produced by freeze drying and shade drying (21.1-19.7; 14.2-10 and 19.4-5.04 mu g/g, respectively); and furan tetrahydro and -pinene (3.2 and 3.1 mu g/g, respectively) by air drying. While chlorogenic acid, coumaric acid and sinapic acid were the most abundant phenolic compounds produced by all the drying treatments (with values that ranged between 88.6-191.8; 41.7-91.3 and 33.2-178.5 mg/100g dry weight of stevia, respectively). The content of volatile compounds was higher with shade drying, whereas most flavonoids and phenolic acids had higher concentrations following freeze drying, although some flavonoids and phenolic acids exhibited a higher increment with air drying. There is no best drying treatment, however, freeze drying results in an extract with satisfactory antioxidant properties and good aromatic characteristics. Copyright (c) 2015 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | The authors thank the Universitat Politecnica de Valencia (Spain) (for funding the project PAID 2011-ref: 2012 and the PhD scholarship), and the Generalitat Valenciana (Spain) (for the project GV/2013/029). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Flavour and fragrance journal (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Stevia | es_ES |
dc.subject | Flavonoids | es_ES |
dc.subject | Phenols | es_ES |
dc.subject | Volatiles compounds | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/ffj.3298 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2013%2F029/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-2011 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Periche Santamaría, A.; Castelló Gómez, ML.; Heredia Gutiérrez, AB.; Escriche Roberto, MI. (2016). Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves. Flavour and fragrance journal (Online). 31(2):173-177. https://doi.org/10.1002/ffj.3298 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/ffj.3298 | es_ES |
dc.description.upvformatpinicio | 173 | es_ES |
dc.description.upvformatpfin | 177 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1099-1026 | es_ES |
dc.relation.pasarela | S\293672 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Wölwer-Rieck, U. (2012). The Leaves of Stevia rebaudiana (Bertoni), Their Constituents and the Analyses Thereof: A Review. Journal of Agricultural and Food Chemistry, 60(4), 886-895. doi:10.1021/jf2044907 | es_ES |
dc.description.references | Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121-1132. doi:10.1016/j.foodchem.2011.11.140 | es_ES |
dc.description.references | (2011). Revised exposure assessment for steviol glycosides for the proposed uses as a food additive. EFSA Journal, 9(1), 1972. doi:10.2903/j.efsa.2011.1972 | es_ES |
dc.description.references | Periche, A., Koutsidis, G., & Escriche, I. (2013). Composition of Antioxidants and Amino Acids in Stevia Leaf Infusions. Plant Foods for Human Nutrition, 69(1), 1-7. doi:10.1007/s11130-013-0398-1 | es_ES |
dc.description.references | Carbonell-Capella, J. M., Barba, F. J., Esteve, M. J., & Frígola, A. (2013). High pressure processing of fruit juice mixture sweetened with Stevia rebaudiana Bertoni: Optimal retention of physical and nutritional quality. Innovative Food Science & Emerging Technologies, 18, 48-56. doi:10.1016/j.ifset.2013.01.011 | es_ES |
dc.description.references | Shukla, S., Mehta, A., Mehta, P., & Bajpai, V. K. (2012). Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Experimental and Toxicologic Pathology, 64(7-8), 807-811. doi:10.1016/j.etp.2011.02.002 | es_ES |
dc.description.references | Muanda, F. N., Soulimani, R., Diop, B., & Dicko, A. (2011). Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT - Food Science and Technology, 44(9), 1865-1872. doi:10.1016/j.lwt.2010.12.002 | es_ES |
dc.description.references | Kaushik, R., Narayanan, P., Vasudevan, V., Muthukumaran, G., & Usha, A. (2010). Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. Journal of Food Science and Technology, 47(1), 27-33. doi:10.1007/s13197-010-0011-7 | es_ES |
dc.description.references | Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121(1), 41-54. doi:10.1016/j.pharmthera.2008.09.007 | es_ES |
dc.description.references | Lin, S.-D., Sung, J.-M., & Chen, C.-L. (2011). Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea Purpurea grown in Taiwan. Food Chemistry, 125(1), 226-231. doi:10.1016/j.foodchem.2010.09.006 | es_ES |
dc.description.references | Hossain, M. B., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1), 85-91. doi:10.1016/j.foodchem.2010.04.003 | es_ES |
dc.description.references | Capecka, E., Mareczek, A., & Leja, M. (2005). Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93(2), 223-226. doi:10.1016/j.foodchem.2004.09.020 | es_ES |
dc.description.references | Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172. doi:10.1016/j.foodchem.2008.07.090 | es_ES |
dc.description.references | Pinela, J., Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2011). Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food and Chemical Toxicology, 49(11), 2983-2989. doi:10.1016/j.fct.2011.07.054 | es_ES |
dc.description.references | Abascal, K., Ganora, L., & Yarnell, E. (2005). The effect of freeze-drying and its implications for botanical medicine: a review. Phytotherapy Research, 19(8), 655-660. doi:10.1002/ptr.1651 | es_ES |
dc.description.references | Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. doi:10.1016/j.tifs.2005.10.012 | es_ES |
dc.description.references | Di Cesare, L. F., Forni, E., Viscardi, D., & Nani, R. C. (2003). Changes in the Chemical Composition of Basil Caused by Different Drying Procedures. Journal of Agricultural and Food Chemistry, 51(12), 3575-3581. doi:10.1021/jf021080o | es_ES |
dc.description.references | M., D.-M., M., P.-C., & M., C. (2002). Effect of different drying methods on the volatile components of parsley ( Petroselinum crispum L. ). European Food Research and Technology, 215(3), 227-230. doi:10.1007/s00217-002-0529-7 | es_ES |
dc.description.references | Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. (2011). Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 44(5), 1504-1513. doi:10.1016/j.foodres.2011.03.049 | es_ES |
dc.description.references | Commission Decision 2002/657/EC of 12 August, Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, OJEC L221 2002 | es_ES |
dc.description.references | Cacciola, F., Delmonte, P., Jaworska, K., Dugo, P., Mondello, L., & Rader, J. I. (2011). Employing ultra high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. Journal of Chromatography A, 1218(15), 2012-2018. doi:10.1016/j.chroma.2010.08.081 | es_ES |
dc.description.references | Ghanta, S., Banerjee, A., Poddar, A., & Chattopadhyay, S. (2007). Oxidative DNA Damage Preventive Activity and Antioxidant Potential ofStevia rebaudiana(Bertoni) Bertoni, a Natural Sweetener. Journal of Agricultural and Food Chemistry, 55(26), 10962-10967. doi:10.1021/jf071892q | es_ES |
dc.description.references | Li, J., Jiang, H., & Shi, R. (2009). A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni. Natural Product Research, 23(15), 1378-1383. doi:10.1080/14786410802447294 | es_ES |
dc.description.references | Karaköse, H., Jaiswal, R., & Kuhnert, N. (2011). Characterization and Quantification of Hydroxycinnamate Derivatives in Stevia rebaudiana Leaves by LC-MSn. Journal of Agricultural and Food Chemistry, 59(18), 10143-10150. doi:10.1021/jf202185m | es_ES |
dc.description.references | Kim, I.-S., Yang, M., Lee, O.-H., & Kang, S.-N. (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT - Food Science and Technology, 44(5), 1328-1332. doi:10.1016/j.lwt.2010.12.003 | es_ES |
dc.description.references | Ferreira, J. F. S., & Luthria, D. L. (2010). Drying Affects Artemisinin, Dihydroartemisinic Acid, Artemisinic Acid, and the Antioxidant Capacity ofArtemisia annuaL. Leaves. Journal of Agricultural and Food Chemistry, 58(3), 1691-1698. doi:10.1021/jf903222j | es_ES |
dc.description.references | Turko, Y. A., Korobko, N. V., Shokun, V. V., Chernyak, E. N., Vyalkov, A. I., Stepankina, O. N., … Baltaev, U. A. (2007). GC—MS research. I. Essential oil from Stevia rebaudiana. Chemistry of Natural Compounds, 43(6), 744-745. doi:10.1007/s10600-007-0254-3 | es_ES |
dc.description.references | Zygadlo, J. A., Ariza-Espinar, L., Velasco-Negueruela, A., & Perez-Alonso, M. J. (1997). Volatile constituents ofStevia achalensis Hieronymus. Flavour and Fragrance Journal, 12(4), 297-299. doi:10.1002/(sici)1099-1026(199707)12:4<297::aid-ffj625>3.0.co;2-2 | es_ES |
dc.description.references | Moon, J.-K., & Shibamoto, T. (2010). Formation of Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components: Quinic Acid, Caffeic Acid, and Chlorogenic Acid. Journal of Agricultural and Food Chemistry, 58(9), 5465-5470. doi:10.1021/jf1005148 | es_ES |