- -

Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Periche Santamaría, Angela es_ES
dc.contributor.author Castelló Gómez, María Luisa es_ES
dc.contributor.author Heredia Gutiérrez, Ana Belén es_ES
dc.contributor.author Escriche Roberto, Mª Isabel es_ES
dc.date.accessioned 2020-09-12T03:34:46Z
dc.date.available 2020-09-12T03:34:46Z
dc.date.issued 2016-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149945
dc.description.abstract [EN] Different drying methods (hot air drying, freeze drying and shade drying) were evaluated to discern the optimal conditions for the preservation of flavonoid, phenolic and volatile compounds in stevia leaves. All the methods applied affected the antioxidant and volatile compounds in dried stevia leaves differently. 2-Hexenal, hexanal and -pinene were the most abundant volatile compounds produced by freeze drying and shade drying (21.1-19.7; 14.2-10 and 19.4-5.04 mu g/g, respectively); and furan tetrahydro and -pinene (3.2 and 3.1 mu g/g, respectively) by air drying. While chlorogenic acid, coumaric acid and sinapic acid were the most abundant phenolic compounds produced by all the drying treatments (with values that ranged between 88.6-191.8; 41.7-91.3 and 33.2-178.5 mg/100g dry weight of stevia, respectively). The content of volatile compounds was higher with shade drying, whereas most flavonoids and phenolic acids had higher concentrations following freeze drying, although some flavonoids and phenolic acids exhibited a higher increment with air drying. There is no best drying treatment, however, freeze drying results in an extract with satisfactory antioxidant properties and good aromatic characteristics. Copyright (c) 2015 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship The authors thank the Universitat Politecnica de Valencia (Spain) (for funding the project PAID 2011-ref: 2012 and the PhD scholarship), and the Generalitat Valenciana (Spain) (for the project GV/2013/029). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Flavour and fragrance journal (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stevia es_ES
dc.subject Flavonoids es_ES
dc.subject Phenols es_ES
dc.subject Volatiles compounds es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ffj.3298 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2013%2F029/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2011 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Periche Santamaría, A.; Castelló Gómez, ML.; Heredia Gutiérrez, AB.; Escriche Roberto, MI. (2016). Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves. Flavour and fragrance journal (Online). 31(2):173-177. https://doi.org/10.1002/ffj.3298 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ffj.3298 es_ES
dc.description.upvformatpinicio 173 es_ES
dc.description.upvformatpfin 177 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1099-1026 es_ES
dc.relation.pasarela S\293672 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Wölwer-Rieck, U. (2012). The Leaves of Stevia rebaudiana (Bertoni), Their Constituents and the Analyses Thereof: A Review. Journal of Agricultural and Food Chemistry, 60(4), 886-895. doi:10.1021/jf2044907 es_ES
dc.description.references Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121-1132. doi:10.1016/j.foodchem.2011.11.140 es_ES
dc.description.references (2011). Revised exposure assessment for steviol glycosides for the proposed uses as a food additive. EFSA Journal, 9(1), 1972. doi:10.2903/j.efsa.2011.1972 es_ES
dc.description.references Periche, A., Koutsidis, G., & Escriche, I. (2013). Composition of Antioxidants and Amino Acids in Stevia Leaf Infusions. Plant Foods for Human Nutrition, 69(1), 1-7. doi:10.1007/s11130-013-0398-1 es_ES
dc.description.references Carbonell-Capella, J. M., Barba, F. J., Esteve, M. J., & Frígola, A. (2013). High pressure processing of fruit juice mixture sweetened with Stevia rebaudiana Bertoni: Optimal retention of physical and nutritional quality. Innovative Food Science & Emerging Technologies, 18, 48-56. doi:10.1016/j.ifset.2013.01.011 es_ES
dc.description.references Shukla, S., Mehta, A., Mehta, P., & Bajpai, V. K. (2012). Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Experimental and Toxicologic Pathology, 64(7-8), 807-811. doi:10.1016/j.etp.2011.02.002 es_ES
dc.description.references Muanda, F. N., Soulimani, R., Diop, B., & Dicko, A. (2011). Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT - Food Science and Technology, 44(9), 1865-1872. doi:10.1016/j.lwt.2010.12.002 es_ES
dc.description.references Kaushik, R., Narayanan, P., Vasudevan, V., Muthukumaran, G., & Usha, A. (2010). Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. Journal of Food Science and Technology, 47(1), 27-33. doi:10.1007/s13197-010-0011-7 es_ES
dc.description.references Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121(1), 41-54. doi:10.1016/j.pharmthera.2008.09.007 es_ES
dc.description.references Lin, S.-D., Sung, J.-M., & Chen, C.-L. (2011). Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea Purpurea grown in Taiwan. Food Chemistry, 125(1), 226-231. doi:10.1016/j.foodchem.2010.09.006 es_ES
dc.description.references Hossain, M. B., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1), 85-91. doi:10.1016/j.foodchem.2010.04.003 es_ES
dc.description.references Capecka, E., Mareczek, A., & Leja, M. (2005). Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93(2), 223-226. doi:10.1016/j.foodchem.2004.09.020 es_ES
dc.description.references Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172. doi:10.1016/j.foodchem.2008.07.090 es_ES
dc.description.references Pinela, J., Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2011). Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food and Chemical Toxicology, 49(11), 2983-2989. doi:10.1016/j.fct.2011.07.054 es_ES
dc.description.references Abascal, K., Ganora, L., & Yarnell, E. (2005). The effect of freeze-drying and its implications for botanical medicine: a review. Phytotherapy Research, 19(8), 655-660. doi:10.1002/ptr.1651 es_ES
dc.description.references Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153-163. doi:10.1016/j.tifs.2005.10.012 es_ES
dc.description.references Di Cesare, L. F., Forni, E., Viscardi, D., & Nani, R. C. (2003). Changes in the Chemical Composition of Basil Caused by Different Drying Procedures. Journal of Agricultural and Food Chemistry, 51(12), 3575-3581. doi:10.1021/jf021080o es_ES
dc.description.references M., D.-M., M., P.-C., & M., C. (2002). Effect of different drying methods on the volatile components of parsley ( Petroselinum crispum L. ). European Food Research and Technology, 215(3), 227-230. doi:10.1007/s00217-002-0529-7 es_ES
dc.description.references Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. (2011). Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 44(5), 1504-1513. doi:10.1016/j.foodres.2011.03.049 es_ES
dc.description.references Commission Decision 2002/657/EC of 12 August, Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, OJEC L221 2002 es_ES
dc.description.references Cacciola, F., Delmonte, P., Jaworska, K., Dugo, P., Mondello, L., & Rader, J. I. (2011). Employing ultra high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. Journal of Chromatography A, 1218(15), 2012-2018. doi:10.1016/j.chroma.2010.08.081 es_ES
dc.description.references Ghanta, S., Banerjee, A., Poddar, A., & Chattopadhyay, S. (2007). Oxidative DNA Damage Preventive Activity and Antioxidant Potential ofStevia rebaudiana(Bertoni) Bertoni, a Natural Sweetener. Journal of Agricultural and Food Chemistry, 55(26), 10962-10967. doi:10.1021/jf071892q es_ES
dc.description.references Li, J., Jiang, H., & Shi, R. (2009). A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni. Natural Product Research, 23(15), 1378-1383. doi:10.1080/14786410802447294 es_ES
dc.description.references Karaköse, H., Jaiswal, R., & Kuhnert, N. (2011). Characterization and Quantification of Hydroxycinnamate Derivatives in Stevia rebaudiana Leaves by LC-MSn. Journal of Agricultural and Food Chemistry, 59(18), 10143-10150. doi:10.1021/jf202185m es_ES
dc.description.references Kim, I.-S., Yang, M., Lee, O.-H., & Kang, S.-N. (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT - Food Science and Technology, 44(5), 1328-1332. doi:10.1016/j.lwt.2010.12.003 es_ES
dc.description.references Ferreira, J. F. S., & Luthria, D. L. (2010). Drying Affects Artemisinin, Dihydroartemisinic Acid, Artemisinic Acid, and the Antioxidant Capacity ofArtemisia annuaL. Leaves. Journal of Agricultural and Food Chemistry, 58(3), 1691-1698. doi:10.1021/jf903222j es_ES
dc.description.references Turko, Y. A., Korobko, N. V., Shokun, V. V., Chernyak, E. N., Vyalkov, A. I., Stepankina, O. N., … Baltaev, U. A. (2007). GC—MS research. I. Essential oil from Stevia rebaudiana. Chemistry of Natural Compounds, 43(6), 744-745. doi:10.1007/s10600-007-0254-3 es_ES
dc.description.references Zygadlo, J. A., Ariza-Espinar, L., Velasco-Negueruela, A., & Perez-Alonso, M. J. (1997). Volatile constituents ofStevia achalensis Hieronymus. Flavour and Fragrance Journal, 12(4), 297-299. doi:10.1002/(sici)1099-1026(199707)12:4<297::aid-ffj625>3.0.co;2-2 es_ES
dc.description.references Moon, J.-K., & Shibamoto, T. (2010). Formation of Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components: Quinic Acid, Caffeic Acid, and Chlorogenic Acid. Journal of Agricultural and Food Chemistry, 58(9), 5465-5470. doi:10.1021/jf1005148 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem