- -

Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology

Mostrar el registro completo del ítem

Seco Torrecillas, A.; Mateo-Llosa, O.; Zamorano-López, N.; Sanchis-Perucho, P.; Serralta Sevilla, J.; Martí Ortega, N.; Borrás Falomir, L.... (2018). Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology. Environmental Science: Water Research & Technology. 4(11):1877-1887. https://doi.org/10.1039/c8ew00313k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149954

Ficheros en el ítem

Metadatos del ítem

Título: Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology
Autor: Seco Torrecillas, Aurora Mateo-Llosa, Oscar Zamorano-López, Núria Sanchis-Perucho, Pau Serralta Sevilla, Joaquín Martí Ortega, Nuria Borrás Falomir, Luis Ferrer, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] Anaerobic membrane bioreactors (AnMBRs) can achieve maximum energy recovery from urban wastewater (UWW) by converting influent COD into methane. The aim of this study was to assess the anaerobic biodegradability limits ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Environmental Science: Water Research & Technology. (issn: 2053-1400 )
DOI: 10.1039/c8ew00313k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://10.1039/c8ew00313k
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//CPI-16-155/
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
Agradecimientos:
This research project was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Project CTM2014-54980-C2-2-R). The authors are also grateful for the support received from the Generalitat Valenciana via ...[+]
Tipo: Artículo

References

Li, W.-W., & Yu, H.-Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972-982. doi:10.1016/j.biotechadv.2011.08.012

Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002

EEA , Performance of water utilities beyond compliance (Technical report No. 5/2014) , Luxemburg , 2014 [+]
Li, W.-W., & Yu, H.-Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972-982. doi:10.1016/j.biotechadv.2011.08.012

Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002

EEA , Performance of water utilities beyond compliance (Technical report No. 5/2014) , Luxemburg , 2014

Martin, I., Pidou, M., Soares, A., Judd, S., & Jefferson, B. (2011). Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology, 32(9), 921-932. doi:10.1080/09593330.2011.565806

JEISON, D., & VANLIER, J. (2007). Cake formation and consolidation: Main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewaters. Separation and Purification Technology, 56(1), 71-78. doi:10.1016/j.seppur.2007.01.022

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013

Cashman, S., Ma, X., Mosley, J., Garland, J., Crone, B., & Xue, X. (2018). Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery. Bioresource Technology, 254, 56-66. doi:10.1016/j.biortech.2018.01.060

Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036

Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H., & Zhang, Y. (2013). A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314, 169-188. doi:10.1016/j.desal.2013.01.019

Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019

Glória, R. M., Motta, T. M., Silva, P. V. O., Costa, P. da, Brandt, E. M. F., Souza, C. L., & Chernicharo, C. A. L. (2016). STRIPPING AND DISSIPATION TECHNIQUES FOR THE REMOVAL OF DISSOLVED GASES FROM ANAEROBIC EFFLUENTS. Brazilian Journal of Chemical Engineering, 33(4), 713-721. doi:10.1590/0104-6632.20160334s20150291

Scherer, E., & Wichmann, K. (2000). Treatment of Groundwater Containing Methane - Combination of the Processing Stages Desorption and Filtration. Acta hydrochimica et hydrobiologica, 28(3), 145-154. doi:10.1002/1521-401x(200003)28:3<145::aid-aheh145>3.0.co;2-v

D. Schippers and R.Schotsman , Recovery and beneficial use of water-based methane, Water21 , 2010 , pp. 34–35

Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 104, 520-531. doi:10.1016/j.watres.2016.08.019

Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037

Hatamoto, M., Yamamoto, H., Kindaichi, T., Ozaki, N., & Ohashi, A. (2010). Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Research, 44(5), 1409-1418. doi:10.1016/j.watres.2009.11.021

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060

Lubello, C., Caffaz, S., Gori, R., & Munz, G. (2009). A modified Activated Sludge Model to estimate solids production at low and high solids retention time. Water Research, 43(18), 4539-4548. doi:10.1016/j.watres.2009.08.001

L. Cabrera , F.García-Usach , J.Ribes , A.Seco , J. J.Morenilla , F.Llavador and J.Ferrer , Estudio de la producción de fangos en bioreactores de membranas aerobios con elevados valores de tiempo de retención celular, Fangos y lodos , 2009 , vol. 7 , pp. 1–3

Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014

Robles, Á., Durán, F., Ruano, M. V., Ribes, J., Rosado, A., Seco, A., & Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology, 36(14), 1795-1806. doi:10.1080/09593330.2015.1012180

R. E. Moosbrugger , M. C.Wentzel , G. A.Ekama and G. R.Marais , Simple Titration Procedures to Determine H2CO3 * Alkalinity And Short-chain Fatty Acids In Aqueous Solutions Containing Known Concentrations Of Ammonium, Phosphate And Sulphide Weak Acid/Bases. WRC Report No. TT 57/92, UCT Research Report W 74 , 1992

Metcalf & Eddy, Inc. , G.Tchobanoglous , F.Burton and H.David Stensel , Wastewater Engineering: Treatment and Reuse , McGraw-Hill Education , 2002

D. A. Stahl and R.Amann , in Nucleic Acid Techniques in Bacterial Systematics, Sequencing and Hybridization Techniques in Bacterial Systematics , 1991 , pp. 205–248

Crocetti, G., Murto, M., & Björnsson, L. (2006). An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). Journal of Microbiological Methods, 65(1), 194-201. doi:10.1016/j.mimet.2005.07.007

Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., & Wagner, M. (1999). The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set. Systematic and Applied Microbiology, 22(3), 434-444. doi:10.1016/s0723-2020(99)80053-8

C. W. Gellings and K. E.Parmenter , Energy efficiency in fertilizer production and use. In Knowledge for Sustainable Development , Encyclopedia of Life Support Systems (EOLSS), Eolss Publisher , Oxford , 2004 , vol. II , pp. 419–450

J. B. Giménez , Estudio del tratamiento anaerobio de aguas residuales urbanas en biorreactores de membrana (Doctoral Thesis) , Universitat de València , Valencia , 2014

Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069

Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2012). Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and Purification Technology, 100, 88-96. doi:10.1016/j.seppur.2012.09.010

Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055

Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018

Regueiro, L., Veiga, P., Figueroa, M., Alonso-Gutierrez, J., Stams, A. J. M., Lema, J. M., & Carballa, M. (2012). Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiological Research, 167(10), 581-589. doi:10.1016/j.micres.2012.06.002

Khan, M. A., Patel, P. G., Ganesh, A. G., Rais, N., Faheem, S. M., & Khan, S. T. (2018). Assessing Methanogenic Archaeal Community in Full Scale Anaerobic Sludge Digester Systems in Dubai, United Arab Emirates. The Open Microbiology Journal, 12(1), 123-134. doi:10.2174/1874285801812010123

Reyes, M., Borrás, L., Seco, A., & Ferrer, J. (2014). Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes. Environmental Technology, 36(1), 45-53. doi:10.1080/09593330.2014.934745

Shin, C., McCarty, P. L., Kim, J., & Bae, J. (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95-103. doi:10.1016/j.biortech.2014.02.060

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem