- -

Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Seco Torrecillas, Aurora es_ES
dc.contributor.author Mateo-Llosa, Oscar es_ES
dc.contributor.author Zamorano-López, Núria es_ES
dc.contributor.author Sanchis-Perucho, Pau es_ES
dc.contributor.author Serralta Sevilla, Joaquín es_ES
dc.contributor.author Martí Ortega, Nuria es_ES
dc.contributor.author Borrás Falomir, Luis es_ES
dc.contributor.author Ferrer, J. es_ES
dc.date.accessioned 2020-09-12T03:35:03Z
dc.date.available 2020-09-12T03:35:03Z
dc.date.issued 2018-11-01 es_ES
dc.identifier.issn 2053-1400 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149954
dc.description.abstract [EN] Anaerobic membrane bioreactors (AnMBRs) can achieve maximum energy recovery from urban wastewater (UWW) by converting influent COD into methane. The aim of this study was to assess the anaerobic biodegradability limits of urban wastewater with AnMBR technology by studying the possible degradation of the organic matter considered as non-biodegradable as observed in aerobic membrane bioreactors operated at very high sludge retention times. For this, the results obtained in an AnMBR pilot plant operated at very high SRT (140 days) treating sulfate-rich urban wastewater were compared with those previously obtained with the system operating at lower SRT (29 to 70 days). At 140 days SRT the organic matter biodegraded by the AnMBR system accounted for 64.4% of the influent COD (45.9% was removed by sulfate reducing bacteria (SRB), and only 18.5% was converted into methane, highlighting the strong competition between SRB and methanogenic archaea (MA) when treating sulfate-rich wastewater). Almost half of the methane produced (46%) was dissolved in the permeate and most of it was recovered by a degassing membrane. The organic matter biodegraded by the AnMBR system was similar to the influent anaerobic biodegradability determined by wastewater characterization assays (68.5% of the influent COD), indicating that nearly all the influent's biodegradable organic matter had been removed. This percentage of degraded COD was similar to that obtained in previous studies working at 70 days SRT, showing that the limit of anaerobic biodegradability was already reached in this SRT. The organic matter considered as non-biodegradable according to wastewater characterization assays therefore was not seen to degrade in the AnMBR pilot plant, even at very high SRT. Once the biodegraded COD is close to the influent's anaerobic biodegradability, increasing the SRT is not justified as it only leads to higher operational costs for the same biogas production. These findings support the use of mathematical models for AnMBR design since they accurately represent the behaviour of these systems in a wide range of operating conditions. es_ES
dc.description.sponsorship This research project was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Project CTM2014-54980-C2-2-R). The authors are also grateful for the support received from the Generalitat Valenciana via CPI-16-155 fellowships. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Environmental Science: Water Research & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8ew00313k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CPI-16-155/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Seco Torrecillas, A.; Mateo-Llosa, O.; Zamorano-López, N.; Sanchis-Perucho, P.; Serralta Sevilla, J.; Martí Ortega, N.; Borrás Falomir, L.... (2018). Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology. Environmental Science: Water Research & Technology. 4(11):1877-1887. https://doi.org/10.1039/c8ew00313k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://10.1039/c8ew00313k es_ES
dc.description.upvformatpinicio 1877 es_ES
dc.description.upvformatpfin 1887 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\378789 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Li, W.-W., & Yu, H.-Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972-982. doi:10.1016/j.biotechadv.2011.08.012 es_ES
dc.description.references Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002 es_ES
dc.description.references EEA , Performance of water utilities beyond compliance (Technical report No. 5/2014) , Luxemburg , 2014 es_ES
dc.description.references Martin, I., Pidou, M., Soares, A., Judd, S., & Jefferson, B. (2011). Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology, 32(9), 921-932. doi:10.1080/09593330.2011.565806 es_ES
dc.description.references JEISON, D., & VANLIER, J. (2007). Cake formation and consolidation: Main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewaters. Separation and Purification Technology, 56(1), 71-78. doi:10.1016/j.seppur.2007.01.022 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013 es_ES
dc.description.references Cashman, S., Ma, X., Mosley, J., Garland, J., Crone, B., & Xue, X. (2018). Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery. Bioresource Technology, 254, 56-66. doi:10.1016/j.biortech.2018.01.060 es_ES
dc.description.references Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036 es_ES
dc.description.references Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H., & Zhang, Y. (2013). A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314, 169-188. doi:10.1016/j.desal.2013.01.019 es_ES
dc.description.references Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 es_ES
dc.description.references Glória, R. M., Motta, T. M., Silva, P. V. O., Costa, P. da, Brandt, E. M. F., Souza, C. L., & Chernicharo, C. A. L. (2016). STRIPPING AND DISSIPATION TECHNIQUES FOR THE REMOVAL OF DISSOLVED GASES FROM ANAEROBIC EFFLUENTS. Brazilian Journal of Chemical Engineering, 33(4), 713-721. doi:10.1590/0104-6632.20160334s20150291 es_ES
dc.description.references Scherer, E., & Wichmann, K. (2000). Treatment of Groundwater Containing Methane - Combination of the Processing Stages Desorption and Filtration. Acta hydrochimica et hydrobiologica, 28(3), 145-154. doi:10.1002/1521-401x(200003)28:3<145::aid-aheh145>3.0.co;2-v es_ES
dc.description.references D. Schippers and R.Schotsman , Recovery and beneficial use of water-based methane, Water21 , 2010 , pp. 34–35 es_ES
dc.description.references Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 104, 520-531. doi:10.1016/j.watres.2016.08.019 es_ES
dc.description.references Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037 es_ES
dc.description.references Hatamoto, M., Yamamoto, H., Kindaichi, T., Ozaki, N., & Ohashi, A. (2010). Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Research, 44(5), 1409-1418. doi:10.1016/j.watres.2009.11.021 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060 es_ES
dc.description.references Lubello, C., Caffaz, S., Gori, R., & Munz, G. (2009). A modified Activated Sludge Model to estimate solids production at low and high solids retention time. Water Research, 43(18), 4539-4548. doi:10.1016/j.watres.2009.08.001 es_ES
dc.description.references L. Cabrera , F.García-Usach , J.Ribes , A.Seco , J. J.Morenilla , F.Llavador and J.Ferrer , Estudio de la producción de fangos en bioreactores de membranas aerobios con elevados valores de tiempo de retención celular, Fangos y lodos , 2009 , vol. 7 , pp. 1–3 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Robles, Á., Durán, F., Ruano, M. V., Ribes, J., Rosado, A., Seco, A., & Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology, 36(14), 1795-1806. doi:10.1080/09593330.2015.1012180 es_ES
dc.description.references R. E. Moosbrugger , M. C.Wentzel , G. A.Ekama and G. R.Marais , Simple Titration Procedures to Determine H2CO3 * Alkalinity And Short-chain Fatty Acids In Aqueous Solutions Containing Known Concentrations Of Ammonium, Phosphate And Sulphide Weak Acid/Bases. WRC Report No. TT 57/92, UCT Research Report W 74 , 1992 es_ES
dc.description.references Metcalf & Eddy, Inc. , G.Tchobanoglous , F.Burton and H.David Stensel , Wastewater Engineering: Treatment and Reuse , McGraw-Hill Education , 2002 es_ES
dc.description.references D. A. Stahl and R.Amann , in Nucleic Acid Techniques in Bacterial Systematics, Sequencing and Hybridization Techniques in Bacterial Systematics , 1991 , pp. 205–248 es_ES
dc.description.references Crocetti, G., Murto, M., & Björnsson, L. (2006). An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). Journal of Microbiological Methods, 65(1), 194-201. doi:10.1016/j.mimet.2005.07.007 es_ES
dc.description.references Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., & Wagner, M. (1999). The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set. Systematic and Applied Microbiology, 22(3), 434-444. doi:10.1016/s0723-2020(99)80053-8 es_ES
dc.description.references C. W. Gellings and K. E.Parmenter , Energy efficiency in fertilizer production and use. In Knowledge for Sustainable Development , Encyclopedia of Life Support Systems (EOLSS), Eolss Publisher , Oxford , 2004 , vol. II , pp. 419–450 es_ES
dc.description.references J. B. Giménez , Estudio del tratamiento anaerobio de aguas residuales urbanas en biorreactores de membrana (Doctoral Thesis) , Universitat de València , Valencia , 2014 es_ES
dc.description.references Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2012). Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and Purification Technology, 100, 88-96. doi:10.1016/j.seppur.2012.09.010 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055 es_ES
dc.description.references Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018 es_ES
dc.description.references Regueiro, L., Veiga, P., Figueroa, M., Alonso-Gutierrez, J., Stams, A. J. M., Lema, J. M., & Carballa, M. (2012). Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiological Research, 167(10), 581-589. doi:10.1016/j.micres.2012.06.002 es_ES
dc.description.references Khan, M. A., Patel, P. G., Ganesh, A. G., Rais, N., Faheem, S. M., & Khan, S. T. (2018). Assessing Methanogenic Archaeal Community in Full Scale Anaerobic Sludge Digester Systems in Dubai, United Arab Emirates. The Open Microbiology Journal, 12(1), 123-134. doi:10.2174/1874285801812010123 es_ES
dc.description.references Reyes, M., Borrás, L., Seco, A., & Ferrer, J. (2014). Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes. Environmental Technology, 36(1), 45-53. doi:10.1080/09593330.2014.934745 es_ES
dc.description.references Shin, C., McCarty, P. L., Kim, J., & Bae, J. (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95-103. doi:10.1016/j.biortech.2014.02.060 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem