Mostrar el registro sencillo del ítem
dc.contributor.author | Rueda, P. | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2020-09-15T03:32:08Z | |
dc.date.available | 2020-09-15T03:32:08Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 2314-8896 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150038 | |
dc.description.abstract | [EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector valued version of convergence in the weak topology, is equivalent to the convergence with respect to the norm. Examples and applications are also given. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economia y Competitividad (Spain) under Grants MTM2015-66823-C2-2-P (P. Rueda) and MTM2012-36740-C02-02 (E. A. Sanchez Perez). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Journal of Function Spaces | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject | Integrable function | es_ES |
dc.subject | Topological dual | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2016/3763649 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-66823-C2-2-P/ES/AVANCES EN LA SUMABILIDAD DE OPERADORES LINEALES Y NO LINEALES Y LA GEOMETRIA DE LOS ESPACIOS DE FUNCIONES INTEGRABLES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Rueda, P.; Sánchez Pérez, EA. (2016). Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions. Journal of Function Spaces. 1-8. https://doi.org/10.1155/2016/3763649 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2016/3763649 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\326653 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Pérez, E. A. S. (2004). Vector measure duality and tensor product representations of $L_p$-spaces of vector measures. Proceedings of the American Mathematical Society, 132(11), 3319-3326. doi:10.1090/s0002-9939-04-07521-5 | es_ES |
dc.description.references | Lewis, D. (1970). Integration with respect to vector measures. Pacific Journal of Mathematics, 33(1), 157-165. doi:10.2140/pjm.1970.33.157 | es_ES |
dc.description.references | Lewis, D. R. (1972). On integrability and summability in vector spaces. Illinois Journal of Mathematics, 16(2), 294-307. doi:10.1215/ijm/1256052286 | es_ES |
dc.description.references | Curbera, G. P. (1995). Banach Space Properties of L 1 of a Vector Measure. Proceedings of the American Mathematical Society, 123(12), 3797. doi:10.2307/2161909 | es_ES |
dc.description.references | Ferrando, I. (2011). Factorization theorem for 1-summing operators. Czechoslovak Mathematical Journal, 61(3), 785-793. doi:10.1007/s10587-011-0027-9 | es_ES |
dc.description.references | Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., & Sánchez-Pérez, E. A. (2006). Spaces of p-integrable Functions with Respect to a Vector Measure. Positivity, 10(1), 1-16. doi:10.1007/s11117-005-0016-z | es_ES |
dc.description.references | Okada, S., & Ricker, W. J. (1995). The range of the integration map of a vector measure. Archiv der Mathematik, 64(6), 512-522. doi:10.1007/bf01195133 | es_ES |
dc.description.references | Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2002). Compactness of the integration operator associated with a vector measure. Studia Mathematica, 150(2), 133-149. doi:10.4064/sm150-2-3 | es_ES |
dc.description.references | Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2011). Operator ideal properties of vector measures with finite variation. Studia Mathematica, 205(3), 215-249. doi:10.4064/sm205-3-2 | es_ES |
dc.description.references | FERRANDO, I., & SÁNCHEZ PÉREZ, E. A. (2009). TENSOR PRODUCT REPRESENTATION OF THE (PRE)DUAL OF THE Lp-SPACE OF A VECTOR MEASURE. Journal of the Australian Mathematical Society, 87(2), 211-225. doi:10.1017/s1446788709000196 | es_ES |
dc.description.references | Ferrando, I., & Rodríguez, J. (2008). The weak topology on <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> of a vector measure. Topology and its Applications, 155(13), 1439-1444. doi:10.1016/j.topol.2007.12.014 | es_ES |
dc.description.references | Galaz-Fontes, F. (2010). The dual space of L p of a vector measure. Positivity, 14(4), 715-729. doi:10.1007/s11117-010-0071-y | es_ES |
dc.description.references | Rueda, P., & Sánchez-Pérez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030 | es_ES |
dc.description.references | Rueda, P., & Sánchez-Pérez, E. A. (2014). Factorization Theorems for Homogeneous Maps on Banach Function Spaces and Approximation of Compact Operators. Mediterranean Journal of Mathematics, 12(1), 89-115. doi:10.1007/s00009-014-0384-3 | es_ES |
dc.description.references | S�nchez P�rez, E. A. (2003). Vector measure orthonormal functions and best approximation for the 4-norm. Archiv der Mathematik, 80(2), 177-190. doi:10.1007/s00013-003-0450-8 | es_ES |
dc.description.references | Okada, S., Ricker, W. J., & Pérez, E. A. S. (2014). Lattice copies of c0and l∞in spaces of integrable functions for a vector measure. Dissertationes Mathematicae, 500, 1-68. doi:10.4064/dm500-0-1 | es_ES |