- -

Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rueda, P. es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2020-09-15T03:32:08Z
dc.date.available 2020-09-15T03:32:08Z
dc.date.issued 2016 es_ES
dc.identifier.issn 2314-8896 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150038
dc.description.abstract [EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector valued version of convergence in the weak topology, is equivalent to the convergence with respect to the norm. Examples and applications are also given. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Competitividad (Spain) under Grants MTM2015-66823-C2-2-P (P. Rueda) and MTM2012-36740-C02-02 (E. A. Sanchez Perez). es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Journal of Function Spaces es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Vector measure es_ES
dc.subject Integrable function es_ES
dc.subject Topological dual es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2016/3763649 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-66823-C2-2-P/ES/AVANCES EN LA SUMABILIDAD DE OPERADORES LINEALES Y NO LINEALES Y LA GEOMETRIA DE LOS ESPACIOS DE FUNCIONES INTEGRABLES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Rueda, P.; Sánchez Pérez, EA. (2016). Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions. Journal of Function Spaces. 1-8. https://doi.org/10.1155/2016/3763649 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2016/3763649 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\326653 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Pérez, E. A. S. (2004). Vector measure duality and tensor product representations of $L_p$-spaces of vector measures. Proceedings of the American Mathematical Society, 132(11), 3319-3326. doi:10.1090/s0002-9939-04-07521-5 es_ES
dc.description.references Lewis, D. (1970). Integration with respect to vector measures. Pacific Journal of Mathematics, 33(1), 157-165. doi:10.2140/pjm.1970.33.157 es_ES
dc.description.references Lewis, D. R. (1972). On integrability and summability in vector spaces. Illinois Journal of Mathematics, 16(2), 294-307. doi:10.1215/ijm/1256052286 es_ES
dc.description.references Curbera, G. P. (1995). Banach Space Properties of L 1 of a Vector Measure. Proceedings of the American Mathematical Society, 123(12), 3797. doi:10.2307/2161909 es_ES
dc.description.references Ferrando, I. (2011). Factorization theorem for 1-summing operators. Czechoslovak Mathematical Journal, 61(3), 785-793. doi:10.1007/s10587-011-0027-9 es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., & Sánchez-Pérez, E. A. (2006). Spaces of p-integrable Functions with Respect to a Vector Measure. Positivity, 10(1), 1-16. doi:10.1007/s11117-005-0016-z es_ES
dc.description.references Okada, S., & Ricker, W. J. (1995). The range of the integration map of a vector measure. Archiv der Mathematik, 64(6), 512-522. doi:10.1007/bf01195133 es_ES
dc.description.references Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2002). Compactness of the integration operator associated with a vector measure. Studia Mathematica, 150(2), 133-149. doi:10.4064/sm150-2-3 es_ES
dc.description.references Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2011). Operator ideal properties of vector measures with finite variation. Studia Mathematica, 205(3), 215-249. doi:10.4064/sm205-3-2 es_ES
dc.description.references FERRANDO, I., & SÁNCHEZ PÉREZ, E. A. (2009). TENSOR PRODUCT REPRESENTATION OF THE (PRE)DUAL OF THE Lp-SPACE OF A VECTOR MEASURE. Journal of the Australian Mathematical Society, 87(2), 211-225. doi:10.1017/s1446788709000196 es_ES
dc.description.references Ferrando, I., & Rodríguez, J. (2008). The weak topology on <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> of a vector measure. Topology and its Applications, 155(13), 1439-1444. doi:10.1016/j.topol.2007.12.014 es_ES
dc.description.references Galaz-Fontes, F. (2010). The dual space of L p of a vector measure. Positivity, 14(4), 715-729. doi:10.1007/s11117-010-0071-y es_ES
dc.description.references Rueda, P., & Sánchez-Pérez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030 es_ES
dc.description.references Rueda, P., & Sánchez-Pérez, E. A. (2014). Factorization Theorems for Homogeneous Maps on Banach Function Spaces and Approximation of Compact Operators. Mediterranean Journal of Mathematics, 12(1), 89-115. doi:10.1007/s00009-014-0384-3 es_ES
dc.description.references S�nchez P�rez, E. A. (2003). Vector measure orthonormal functions and best approximation for the 4-norm. Archiv der Mathematik, 80(2), 177-190. doi:10.1007/s00013-003-0450-8 es_ES
dc.description.references Okada, S., Ricker, W. J., & Pérez, E. A. S. (2014). Lattice copies of c0and l∞in spaces of integrable functions for a vector measure. Dissertationes Mathematicae, 500, 1-68. doi:10.4064/dm500-0-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem