Pérez, E. A. S. (2004). Vector measure duality and tensor product representations of $L_p$-spaces of vector measures. Proceedings of the American Mathematical Society, 132(11), 3319-3326. doi:10.1090/s0002-9939-04-07521-5
Lewis, D. (1970). Integration with respect to vector measures. Pacific Journal of Mathematics, 33(1), 157-165. doi:10.2140/pjm.1970.33.157
Lewis, D. R. (1972). On integrability and summability in vector spaces. Illinois Journal of Mathematics, 16(2), 294-307. doi:10.1215/ijm/1256052286
[+]
Pérez, E. A. S. (2004). Vector measure duality and tensor product representations of $L_p$-spaces of vector measures. Proceedings of the American Mathematical Society, 132(11), 3319-3326. doi:10.1090/s0002-9939-04-07521-5
Lewis, D. (1970). Integration with respect to vector measures. Pacific Journal of Mathematics, 33(1), 157-165. doi:10.2140/pjm.1970.33.157
Lewis, D. R. (1972). On integrability and summability in vector spaces. Illinois Journal of Mathematics, 16(2), 294-307. doi:10.1215/ijm/1256052286
Curbera, G. P. (1995). Banach Space Properties of L 1 of a Vector Measure. Proceedings of the American Mathematical Society, 123(12), 3797. doi:10.2307/2161909
Ferrando, I. (2011). Factorization theorem for 1-summing operators. Czechoslovak Mathematical Journal, 61(3), 785-793. doi:10.1007/s10587-011-0027-9
Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., & Sánchez-Pérez, E. A. (2006). Spaces of p-integrable Functions with Respect to a Vector Measure. Positivity, 10(1), 1-16. doi:10.1007/s11117-005-0016-z
Okada, S., & Ricker, W. J. (1995). The range of the integration map of a vector measure. Archiv der Mathematik, 64(6), 512-522. doi:10.1007/bf01195133
Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2002). Compactness of the integration operator associated with a vector measure. Studia Mathematica, 150(2), 133-149. doi:10.4064/sm150-2-3
Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2011). Operator ideal properties of vector measures with finite variation. Studia Mathematica, 205(3), 215-249. doi:10.4064/sm205-3-2
FERRANDO, I., & SÁNCHEZ PÉREZ, E. A. (2009). TENSOR PRODUCT REPRESENTATION OF THE (PRE)DUAL OF THE Lp-SPACE OF A VECTOR MEASURE. Journal of the Australian Mathematical Society, 87(2), 211-225. doi:10.1017/s1446788709000196
Ferrando, I., & Rodríguez, J. (2008). The weak topology on <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> of a vector measure. Topology and its Applications, 155(13), 1439-1444. doi:10.1016/j.topol.2007.12.014
Galaz-Fontes, F. (2010). The dual space of L p of a vector measure. Positivity, 14(4), 715-729. doi:10.1007/s11117-010-0071-y
Rueda, P., & Sánchez-Pérez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030
Rueda, P., & Sánchez-Pérez, E. A. (2014). Factorization Theorems for Homogeneous Maps on Banach Function Spaces and Approximation of Compact Operators. Mediterranean Journal of Mathematics, 12(1), 89-115. doi:10.1007/s00009-014-0384-3
S�nchez P�rez, E. A. (2003). Vector measure orthonormal functions and best approximation for the 4-norm. Archiv der Mathematik, 80(2), 177-190. doi:10.1007/s00013-003-0450-8
Okada, S., Ricker, W. J., & Pérez, E. A. S. (2014). Lattice copies of c0and l∞in spaces of integrable functions for a vector measure. Dissertationes Mathematicae, 500, 1-68. doi:10.4064/dm500-0-1
[-]