Mostrar el registro sencillo del ítem
dc.contributor.author | Correia, D. M. | es_ES |
dc.contributor.author | Gamiz Gonzalez, Mª Amparo | es_ES |
dc.contributor.author | Botelho, G. | es_ES |
dc.contributor.author | Vidaurre, Ana | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Lanceros-Mendez, S. | es_ES |
dc.contributor.author | Sencadas, V. | es_ES |
dc.date.accessioned | 2020-09-15T03:32:17Z | |
dc.date.available | 2020-09-15T03:32:17Z | |
dc.date.issued | 2014-07 | es_ES |
dc.identifier.issn | 1388-6150 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150041 | |
dc.description.abstract | [EN] Thermal degradation of as-electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde has been studied by thermogravimetry (TG) coupled with an infrared spectrometer. The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 C, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 and 270 C and chitosan thermal degradation that starts around 250 C and goes up to 400 C. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder. | es_ES |
dc.description.sponsorship | This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and PEST-C/QUI/UIO686/2011. The authors also thank funding from "Matepro-Optimizing Materials and Processes", ref. "NORTE-07-0124-FEDER-000037", co-funded by the "Programa Operacional Regional do Norte" (ON.2 - O Novo Norte), under the "Quadro de Referencia Estrategico Nacional" (QREN), through the "Fundo Europeu de Desenvolvimento Regional" (FEDER). The authors also thank support from the COST Action MP1003 - "European Scientific Network for Artificial Muscles", MP1206 "Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications" and MP1301 "New Generation Biomimetic and Customized Implants for Bone Engineering". DMC and VS thank the FCT for the SFRH/BD/82411/2011 and SFRH/BPD/63148/2009 grants, respectively. JLGR and MAGG acknowledge the support of the Spanish Ministry of Science and Innovation through project no. MAT2010-21611-C03-01 and MAGG the BES-2011-044740 grant. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Thermal Analysis and Calorimetry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | Electrospun membranes | es_ES |
dc.subject | Thermal degradation kinetics | es_ES |
dc.subject | Activation energy | es_ES |
dc.subject | Cross-linking | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10973-014-3707-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F82411%2F2011/PT/SCAFFOLDS TRIDIMENSIONAIS BASEADOS EM NNANOFIBRAS ELECTROACTIVAS BIODEGRADÁVEIS PARA APLICAÇÃO EM ENGENHARIA DE TECIDOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//MP1301/EU/New Generation Biomimetic and Customized Implants for Bone Engineering/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//MP1206/EU/Electrospun nano-fibres for bio inspired composite materials and innovative industrial applications/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//MP1003/EU/European Scientific Network for Artificial Muscles (ESNAM)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PEst-C%2FFIS%2FUI607%2F2011/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PEst-C%2FQUI%2FUI0686%2F2011/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-044740/ES/BES-2011-044740/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//NORTE-07-0124-FEDER-000037/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Correia, DM.; Gamiz Gonzalez, MA.; Botelho, G.; Vidaurre, A.; Gómez Ribelles, JL.; Lanceros-Mendez, S.; Sencadas, V. (2014). Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry. 117(1):123-130. https://doi.org/10.1007/s10973-014-3707-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10973-014-3707-5 | es_ES |
dc.description.upvformatpinicio | 123 | es_ES |
dc.description.upvformatpfin | 130 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\269274 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Nam YS, Park WH, Ihm D, Hudson SM. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr Polym. 2010;80(1):291–5. doi: 10.1016/j.carbpol.2009.11.030 . | es_ES |
dc.description.references | Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65. doi: 10.1016/s0168-3659(03)00126-3 . | es_ES |
dc.description.references | Geng X, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26(27):5427–32. doi: 10.1016/j.biomaterials.2005.01.066 . | es_ES |
dc.description.references | Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. doi: 10.1016/j.progpolymsci.2011.02.001 . | es_ES |
dc.description.references | Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641–78. doi: 10.1016/j.progpolymsci.2009.04.001 . | es_ES |
dc.description.references | Schiffman JD, Schauer CL. Cross-linking chitosan nanofibers. Biomacromolecules. 2007;8(2):594–601. doi: 10.1021/bm060804s . | es_ES |
dc.description.references | Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142–50. doi: 10.1016/j.biotechadv.2009.11.001 . | es_ES |
dc.description.references | Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868–92. doi: 10.1016/j.progpolymsci.2010.03.003 . | es_ES |
dc.description.references | Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47. doi: 10.1016/j.biotechadv.2010.01.004 . | es_ES |
dc.description.references | Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25(18):1600–5. doi: 10.1002/marc.200400253 . | es_ES |
dc.description.references | Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H. Chitosan nanofiber. Biomacromolecules. 2006;7(11):3291–4. doi: 10.1021/bm0604395 . | es_ES |
dc.description.references | Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, et al. Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym. 2012;87(2):1295–301. doi: 10.1016/j.carbpol.2011.09.017 . | es_ES |
dc.description.references | Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules. 2006;7(10):2710–4. doi: 10.1021/bm060286l . | es_ES |
dc.description.references | Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Ribelles JLG, et al. Physical–chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test. 2012;31(8):1062–9. | es_ES |
dc.description.references | Julkapli NM, Ahmad Z, Akil HM. X-ray diffraction studies of cross linked chitosan with different cross linking agents for waste water treatment application. In: Saat AAH, JMH H, Othman SJM, MRI A, Idris FM, Mham A, editors. Neutron and X-ray scattering advancing materials research. AIP Conference Proceedings; 2009, p. 106–11. | es_ES |
dc.description.references | Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87(3):389–94. doi: 10.1016/j.polymdegradstab.2004.08.006 . | es_ES |
dc.description.references | Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62(2):97–103. doi: 10.1016/j.carbpol.2005.02.022 . | es_ES |
dc.description.references | Taboada E, Cabrera G, Jimenez R, Cardenas G. A kinetic study of the thermal degradation of chitosan-metal complexes. J Appl Polym Sci. 2009;114(4):2043–52. doi: 10.1002/app.30796 . | es_ES |
dc.description.references | Hong P-Z, Li S-D, Ou C-Y, Li C-P, Yang L, Zhang C-H. Thermogravimetric analysis of chitosan. J Appl Polym Sci. 2007;105(2):547–51. doi: 10.1002/app.25920 . | es_ES |
dc.description.references | Novamatrix. Protasan—chitosan biopolymer. In: Novamatrix, editor; 2011. http://www.novamatrix.biz . | es_ES |
dc.description.references | Zeng L, Qin C, Wang L, Li W. Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym. 2011;83(4):1553–7. doi: 10.1016/j.carbpol.2010.10.007 . | es_ES |
dc.description.references | Pereira F, Silva Agostini D, Job A, González E. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2013;114(1):321–7. doi: 10.1007/s10973-012-2835-z . | es_ES |
dc.description.references | Julkapli N, Akil H, Ahmad Z. Thermal properties of 4,4-oxydiphathalic anhydride chitosan filled chitosan bio-composites. J Therm Anal Calorim. 2012;107(1):365–76. doi: 10.1007/s10973-011-1864-3 . | es_ES |
dc.description.references | Scheinmann F. An introduction to spectroscopic methods for the identification of organic compounds. Oxford: Pergamon Press; 1979. | es_ES |
dc.description.references | Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396(1–2):153–66. doi: 10.1016/S0040-6031(02)00523-3 . | es_ES |
dc.description.references | Kagarise RE. Infrared spectrum of trifluoroacetic acid vapor. J Chem Phys. 1957;27(2):519–22. | es_ES |
dc.description.references | Fuson N, Josien M-L, Jones EA, Lawson JR. Infrared and Raman spectroscopy studies of light and heavy trifluoroacetic acids. J Chem Phys. 1952;20(10):1627–34. | es_ES |
dc.description.references | Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids. 2008;354(1):72–8. doi: 10.1016/j.jnoncrysol.2007.07.012 . | es_ES |
dc.description.references | Kissinger HE. Variation of the peak temperature with heating rate in differential thermal analysis. J Res Natl Inst Standards Technol. 1956;57:217–21. | es_ES |
dc.description.references | Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 2002;29(11):1702–6. doi: 10.1021/ac60131a045 . | es_ES |
dc.description.references | Israelachvili JN. Intermolecular and surface forces: revised (third edition). Amesterdam: Elsevier Science; 2011. | es_ES |
dc.description.references | Sanderson RT. Polar covalence. India: Academic Press; 1983. | es_ES |