- -

Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Correia, D. M. es_ES
dc.contributor.author Gamiz Gonzalez, Mª Amparo es_ES
dc.contributor.author Botelho, G. es_ES
dc.contributor.author Vidaurre, Ana es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Mendez, S. es_ES
dc.contributor.author Sencadas, V. es_ES
dc.date.accessioned 2020-09-15T03:32:17Z
dc.date.available 2020-09-15T03:32:17Z
dc.date.issued 2014-07 es_ES
dc.identifier.issn 1388-6150 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150041
dc.description.abstract [EN] Thermal degradation of as-electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde has been studied by thermogravimetry (TG) coupled with an infrared spectrometer. The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 C, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 and 270 C and chitosan thermal degradation that starts around 250 C and goes up to 400 C. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder. es_ES
dc.description.sponsorship This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and PEST-C/QUI/UIO686/2011. The authors also thank funding from "Matepro-Optimizing Materials and Processes", ref. "NORTE-07-0124-FEDER-000037", co-funded by the "Programa Operacional Regional do Norte" (ON.2 - O Novo Norte), under the "Quadro de Referencia Estrategico Nacional" (QREN), through the "Fundo Europeu de Desenvolvimento Regional" (FEDER). The authors also thank support from the COST Action MP1003 - "European Scientific Network for Artificial Muscles", MP1206 "Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications" and MP1301 "New Generation Biomimetic and Customized Implants for Bone Engineering". DMC and VS thank the FCT for the SFRH/BD/82411/2011 and SFRH/BPD/63148/2009 grants, respectively. JLGR and MAGG acknowledge the support of the Spanish Ministry of Science and Innovation through project no. MAT2010-21611-C03-01 and MAGG the BES-2011-044740 grant. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Thermal Analysis and Calorimetry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chitosan es_ES
dc.subject Electrospun membranes es_ES
dc.subject Thermal degradation kinetics es_ES
dc.subject Activation energy es_ES
dc.subject Cross-linking es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10973-014-3707-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F82411%2F2011/PT/SCAFFOLDS TRIDIMENSIONAIS BASEADOS EM NNANOFIBRAS ELECTROACTIVAS BIODEGRADÁVEIS PARA APLICAÇÃO EM ENGENHARIA DE TECIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//MP1301/EU/New Generation Biomimetic and Customized Implants for Bone Engineering/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//MP1206/EU/Electrospun nano-fibres for bio inspired composite materials and innovative industrial applications/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/COST//MP1003/EU/European Scientific Network for Artificial Muscles (ESNAM)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PEst-C%2FFIS%2FUI607%2F2011/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PEst-C%2FQUI%2FUI0686%2F2011/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-044740/ES/BES-2011-044740/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//NORTE-07-0124-FEDER-000037/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Correia, DM.; Gamiz Gonzalez, MA.; Botelho, G.; Vidaurre, A.; Gómez Ribelles, JL.; Lanceros-Mendez, S.; Sencadas, V. (2014). Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry. 117(1):123-130. https://doi.org/10.1007/s10973-014-3707-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10973-014-3707-5 es_ES
dc.description.upvformatpinicio 123 es_ES
dc.description.upvformatpfin 130 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\269274 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Nam YS, Park WH, Ihm D, Hudson SM. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr Polym. 2010;80(1):291–5. doi: 10.1016/j.carbpol.2009.11.030 . es_ES
dc.description.references Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65. doi: 10.1016/s0168-3659(03)00126-3 . es_ES
dc.description.references Geng X, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26(27):5427–32. doi: 10.1016/j.biomaterials.2005.01.066 . es_ES
dc.description.references Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. doi: 10.1016/j.progpolymsci.2011.02.001 . es_ES
dc.description.references Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641–78. doi: 10.1016/j.progpolymsci.2009.04.001 . es_ES
dc.description.references Schiffman JD, Schauer CL. Cross-linking chitosan nanofibers. Biomacromolecules. 2007;8(2):594–601. doi: 10.1021/bm060804s . es_ES
dc.description.references Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142–50. doi: 10.1016/j.biotechadv.2009.11.001 . es_ES
dc.description.references Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868–92. doi: 10.1016/j.progpolymsci.2010.03.003 . es_ES
dc.description.references Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47. doi: 10.1016/j.biotechadv.2010.01.004 . es_ES
dc.description.references Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25(18):1600–5. doi: 10.1002/marc.200400253 . es_ES
dc.description.references Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H. Chitosan nanofiber. Biomacromolecules. 2006;7(11):3291–4. doi: 10.1021/bm0604395 . es_ES
dc.description.references Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, et al. Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym. 2012;87(2):1295–301. doi: 10.1016/j.carbpol.2011.09.017 . es_ES
dc.description.references Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules. 2006;7(10):2710–4. doi: 10.1021/bm060286l . es_ES
dc.description.references Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Ribelles JLG, et al. Physical–chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test. 2012;31(8):1062–9. es_ES
dc.description.references Julkapli NM, Ahmad Z, Akil HM. X-ray diffraction studies of cross linked chitosan with different cross linking agents for waste water treatment application. In: Saat AAH, JMH H, Othman SJM, MRI A, Idris FM, Mham A, editors. Neutron and X-ray scattering advancing materials research. AIP Conference Proceedings; 2009, p. 106–11. es_ES
dc.description.references Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87(3):389–94. doi: 10.1016/j.polymdegradstab.2004.08.006 . es_ES
dc.description.references Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62(2):97–103. doi: 10.1016/j.carbpol.2005.02.022 . es_ES
dc.description.references Taboada E, Cabrera G, Jimenez R, Cardenas G. A kinetic study of the thermal degradation of chitosan-metal complexes. J Appl Polym Sci. 2009;114(4):2043–52. doi: 10.1002/app.30796 . es_ES
dc.description.references Hong P-Z, Li S-D, Ou C-Y, Li C-P, Yang L, Zhang C-H. Thermogravimetric analysis of chitosan. J Appl Polym Sci. 2007;105(2):547–51. doi: 10.1002/app.25920 . es_ES
dc.description.references Novamatrix. Protasan—chitosan biopolymer. In: Novamatrix, editor; 2011. http://www.novamatrix.biz . es_ES
dc.description.references Zeng L, Qin C, Wang L, Li W. Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym. 2011;83(4):1553–7. doi: 10.1016/j.carbpol.2010.10.007 . es_ES
dc.description.references Pereira F, Silva Agostini D, Job A, González E. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2013;114(1):321–7. doi: 10.1007/s10973-012-2835-z . es_ES
dc.description.references Julkapli N, Akil H, Ahmad Z. Thermal properties of 4,4-oxydiphathalic anhydride chitosan filled chitosan bio-composites. J Therm Anal Calorim. 2012;107(1):365–76. doi: 10.1007/s10973-011-1864-3 . es_ES
dc.description.references Scheinmann F. An introduction to spectroscopic methods for the identification of organic compounds. Oxford: Pergamon Press; 1979. es_ES
dc.description.references Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396(1–2):153–66. doi: 10.1016/S0040-6031(02)00523-3 . es_ES
dc.description.references Kagarise RE. Infrared spectrum of trifluoroacetic acid vapor. J Chem Phys. 1957;27(2):519–22. es_ES
dc.description.references Fuson N, Josien M-L, Jones EA, Lawson JR. Infrared and Raman spectroscopy studies of light and heavy trifluoroacetic acids. J Chem Phys. 1952;20(10):1627–34. es_ES
dc.description.references Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids. 2008;354(1):72–8. doi: 10.1016/j.jnoncrysol.2007.07.012 . es_ES
dc.description.references Kissinger HE. Variation of the peak temperature with heating rate in differential thermal analysis. J Res Natl Inst Standards Technol. 1956;57:217–21. es_ES
dc.description.references Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 2002;29(11):1702–6. doi: 10.1021/ac60131a045 . es_ES
dc.description.references Israelachvili JN. Intermolecular and surface forces: revised (third edition). Amesterdam: Elsevier Science; 2011. es_ES
dc.description.references Sanderson RT. Polar covalence. India: Academic Press; 1983. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem