- -

Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1 <= p <= q

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1 <= p <= q

Show full item record

Delgado Garrido, O.; Sánchez Pérez, EA. (2016). Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1 <= p <= q. Positivity. 20(4):999-1014. https://doi.org/10.1007/s11117-016-0397-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150046

Files in this item

Item Metadata

Title: Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1 <= p <= q
Author: Delgado Garrido, Olvido Sánchez Pérez, Enrique Alfonso
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Let and let X be a p-convex Banach function space over a -finite measure . We combine the structure of the spaces and for constructing the new space , where is a probability Radon measure on a certain compact set ...[+]
Subjects: Operator , Extension , Factorization , P-convex , Q-summing
Copyrigths: Reserva de todos los derechos
Source:
Positivity. (issn: 1385-1292 )
DOI: 10.1007/s11117-016-0397-1
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11117-016-0397-1
Project ID:
Junta de Andalucía/FQM-7276
info:eu-repo/grantAgreement/Junta de Andalucía//FQM-262/ES/Teoria De La Aproximacion/
info:eu-repo/grantAgreement/MINECO//MTM2012-36732-C03-03/ES/ORTOGONALIDAD Y APROXIMACION: TEORIA Y APLICACIONES EN CIENCIA Y TECNOLOGIA/
MINECO/MTM2012-36740-C02-02
Thanks:
O. Delgado gratefully acknowledge the support of the Ministerio de Economia y Competitividad (project #MTM2012-36732-C03-03) and the Junta de Andalucia (projects FQM-262 and FQM-7276), Spain. E. A. Sanchez Perez acknowledges ...[+]
Type: Artículo

References

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)

Calabuig, J.M., Rodríguez, J., Sánchez-Pérez, E.A.: Strongly embedded subspaces of $$p$$ p -convex Banach function spaces. Positivity 17, 775–791 (2013)

Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001) [+]
Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)

Calabuig, J.M., Rodríguez, J., Sánchez-Pérez, E.A.: Strongly embedded subspaces of $$p$$ p -convex Banach function spaces. Positivity 17, 775–791 (2013)

Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)

Defant, A., Sánchez Pérez, E.A.: Maurey-Rosenthal factorization of positive operators and convexity. J. Math. Anal. Appl. 297, 771–790 (2004)

Delgado, O., Sánchez Pérez, E.A.: Summability properties for multiplication operators on Banach function spaces. Integr. Equ. Oper. Theory 66, 197–214 (2010)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer-Verlag, Berlin (1979)

Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces, Operator Theory: Adv. Appl., vol 180, Birkhäuser, Basel (2008)

Sánchez Pérez, E.A.: Factorization theorems for multiplication operators on Banach function spaces. Integr. Equ. Oper. Theory 80, 117–135 (2014)

Zaanen, A.C.: Integration, 2nd rev. ed., North-Holland, Amsterdam (1967)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record