- -

Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

Mostrar el registro completo del ítem

Calvo Galve, N.; Giménez-Marqués, M.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F.; Mínguez Espallargas, G.; Coronado, E. (2016). Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers. 3(6):808-813. https://doi.org/10.1039/C5QI00277J

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150054

Ficheros en el ítem

Metadatos del ítem

Título: Isostructural compartmentalized spin-crossover coordination polymers for gas confinement
Autor: Calvo Galve, Néstor Giménez-Marqués, Mónica Palomino Roca, Miguel Valencia Valencia, Susana Rey Garcia, Fernando Mínguez Espallargas, Guillermo Coronado, Eugenio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Inorganic Chemistry Frontiers. (issn: 2052-1545 )
DOI: 10.1039/C5QI00277J
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/C5QI00277J
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/
...[+]
info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/
info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
info:eu-repo/grantAgreement/MINECO//MAT2014-56143-R/ES/INGENIERIA MOLECULAR EN MATERIALES 2D Y EN DISPOSITIVOS ESPINTRONICOS HIBRIDOS/
[-]
Agradecimientos:
Financial support from the Spanish MINECO (CTQ2014-59209-P, MAT2014-56143-R and MAT2012-38567-C02-01), the Generalitat Valenciana (Prometeo and ISIC-Nano programs) and the VLC/Campus Program is gratefully acknowledged. We ...[+]
Tipo: Artículo

References

Hoskins, B. F., & Robson, R. (1989). Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. Journal of the American Chemical Society, 111(15), 5962-5964. doi:10.1021/ja00197a079

Hoskins, B. F., & Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546-1554. doi:10.1021/ja00160a038

Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827 [+]
Hoskins, B. F., & Robson, R. (1989). Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. Journal of the American Chemical Society, 111(15), 5962-5964. doi:10.1021/ja00197a079

Hoskins, B. F., & Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546-1554. doi:10.1021/ja00160a038

Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

Slater, A. G., & Cooper, A. I. (2015). Function-led design of new porous materials. Science, 348(6238), aaa8075-aaa8075. doi:10.1126/science.aaa8075

Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43(16), 5815-5840. doi:10.1039/c4cs00010b

Coronado, E., & Mínguez Espallargas, G. (2013). Dynamic magnetic MOFs. Chem. Soc. Rev., 42(4), 1525-1539. doi:10.1039/c2cs35278h

Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j

Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a

Giménez-Marqués, M., Hidalgo, T., Serre, C., & Horcajada, P. (2016). Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 307, 342-360. doi:10.1016/j.ccr.2015.08.008

Smulders, M. M. J., Riddell, I. A., Browne, C., & Nitschke, J. R. (2013). Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev., 42(4), 1728-1754. doi:10.1039/c2cs35254k

Cook, T. R., & Stang, P. J. (2015). Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chemical Reviews, 115(15), 7001-7045. doi:10.1021/cr5005666

Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., … Fujita, M. (2013). X-ray analysis on the nanogram to microgram scale using porous complexes. Nature, 495(7442), 461-466. doi:10.1038/nature11990

Yoshioka, S., Inokuma, Y., Hoshino, M., Sato, T., & Fujita, M. (2015). Absolute structure determination of compounds with axial and planar chirality using the crystalline sponge method. Chemical Science, 6(7), 3765-3768. doi:10.1039/c5sc01681a

Coronado, E., Giménez-Marqués, M., Mínguez Espallargas, G., Rey, F., & Vitórica-Yrezábal, I. J. (2013). Spin-Crossover Modification through Selective CO2 Sorption. Journal of the American Chemical Society, 135(43), 15986-15989. doi:10.1021/ja407135k

M. Giménez-Marqués , N.Calvo Galve, M.Palomino, S.Valencia, F.Rey, G.Sastre, I. J.Vitórica-Yrezábal, M.Jiménez-Ruiz, J. A.Rodríguez-Velamazán, M. A.González, E.Coronado and G.Mínguez Espallargas

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography, 14(6), 357-361. doi:10.1107/s0021889881009618

Klinowski, J., Almeida Paz, F. A., Silva, P., & Rocha, J. (2011). Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans., 40(2), 321-330. doi:10.1039/c0dt00708k

Aromí, G., Barrios, L. A., Roubeau, O., & Gamez, P. (2011). Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews, 255(5-6), 485-546. doi:10.1016/j.ccr.2010.10.038

Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656

Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966-4981. doi:10.1002/anie.200703934

Mason, J. A., McDonald, T. M., Bae, T.-H., Bachman, J. E., Sumida, K., Dutton, J. J., … Long, J. R. (2015). Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O. Journal of the American Chemical Society, 137(14), 4787-4803. doi:10.1021/jacs.5b00838

Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234

Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. (2008). Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130(33), 10870-10871. doi:10.1021/ja8036096

Calvo Galve, N., Coronado, E., Giménez-Marqués, M., & Mínguez Espallargas, G. (2014). A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer. Inorganic Chemistry, 53(9), 4482-4490. doi:10.1021/ic500141v

Xiang, Z., & Cao, D. (2013). Porous covalent–organic materials: synthesis, clean energy application and design. J. Mater. Chem. A, 1(8), 2691-2718. doi:10.1039/c2ta00063f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem