Mostrar el registro sencillo del ítem
dc.contributor.author | Calvo Galve, Néstor | es_ES |
dc.contributor.author | Giménez-Marqués, Mónica | es_ES |
dc.contributor.author | Palomino Roca, Miguel | es_ES |
dc.contributor.author | Valencia Valencia, Susana | es_ES |
dc.contributor.author | Rey Garcia, Fernando | es_ES |
dc.contributor.author | Mínguez Espallargas, Guillermo | es_ES |
dc.contributor.author | Coronado, Eugenio | es_ES |
dc.date.accessioned | 2020-09-15T03:32:45Z | |
dc.date.available | 2020-09-15T03:32:45Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 2052-1545 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150054 | |
dc.description.abstract | [EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed. | es_ES |
dc.description.sponsorship | Financial support from the Spanish MINECO (CTQ2014-59209-P, MAT2014-56143-R and MAT2012-38567-C02-01), the Generalitat Valenciana (Prometeo and ISIC-Nano programs) and the VLC/Campus Program is gratefully acknowledged. We thank the Spanish government for the provision of a Severo Ochoa project (SEV-2012-0267) and a Maria de Maeztu project (MDM-2015-0538). G.M.E. acknowledges the Blaise Pascal International Chair for financial support. M.G.-M. thanks MICINN for a predoctoral FPU grant and the EU for a Marie Sklodowska-Curie postdoctoral fellowship (H2020-MSCA-IF-EF-658224). N.C.G. thanks the Generalitat Valenciana for a Val-i+d predoctoral fellowship. J. M. Martinez-Agudo and G. Agusti from the University of Valencia are gratefully acknowledged for magnetic measurements. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Inorganic Chemistry Frontiers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Isostructural compartmentalized spin-crossover coordination polymers for gas confinement | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C5QI00277J | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-56143-R/ES/INGENIERIA MOLECULAR EN MATERIALES 2D Y EN DISPOSITIVOS ESPINTRONICOS HIBRIDOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Calvo Galve, N.; Giménez-Marqués, M.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F.; Mínguez Espallargas, G.; Coronado, E. (2016). Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers. 3(6):808-813. https://doi.org/10.1039/C5QI00277J | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/C5QI00277J | es_ES |
dc.description.upvformatpinicio | 808 | es_ES |
dc.description.upvformatpfin | 813 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\313863 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Université Blaise Pascal | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hoskins, B. F., & Robson, R. (1989). Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. Journal of the American Chemical Society, 111(15), 5962-5964. doi:10.1021/ja00197a079 | es_ES |
dc.description.references | Hoskins, B. F., & Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546-1554. doi:10.1021/ja00160a038 | es_ES |
dc.description.references | Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827 | es_ES |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444 | es_ES |
dc.description.references | Slater, A. G., & Cooper, A. I. (2015). Function-led design of new porous materials. Science, 348(6238), aaa8075-aaa8075. doi:10.1126/science.aaa8075 | es_ES |
dc.description.references | Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43(16), 5815-5840. doi:10.1039/c4cs00010b | es_ES |
dc.description.references | Coronado, E., & Mínguez Espallargas, G. (2013). Dynamic magnetic MOFs. Chem. Soc. Rev., 42(4), 1525-1539. doi:10.1039/c2cs35278h | es_ES |
dc.description.references | Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j | es_ES |
dc.description.references | Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a | es_ES |
dc.description.references | Giménez-Marqués, M., Hidalgo, T., Serre, C., & Horcajada, P. (2016). Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 307, 342-360. doi:10.1016/j.ccr.2015.08.008 | es_ES |
dc.description.references | Smulders, M. M. J., Riddell, I. A., Browne, C., & Nitschke, J. R. (2013). Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev., 42(4), 1728-1754. doi:10.1039/c2cs35254k | es_ES |
dc.description.references | Cook, T. R., & Stang, P. J. (2015). Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chemical Reviews, 115(15), 7001-7045. doi:10.1021/cr5005666 | es_ES |
dc.description.references | Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., … Fujita, M. (2013). X-ray analysis on the nanogram to microgram scale using porous complexes. Nature, 495(7442), 461-466. doi:10.1038/nature11990 | es_ES |
dc.description.references | Yoshioka, S., Inokuma, Y., Hoshino, M., Sato, T., & Fujita, M. (2015). Absolute structure determination of compounds with axial and planar chirality using the crystalline sponge method. Chemical Science, 6(7), 3765-3768. doi:10.1039/c5sc01681a | es_ES |
dc.description.references | Coronado, E., Giménez-Marqués, M., Mínguez Espallargas, G., Rey, F., & Vitórica-Yrezábal, I. J. (2013). Spin-Crossover Modification through Selective CO2 Sorption. Journal of the American Chemical Society, 135(43), 15986-15989. doi:10.1021/ja407135k | es_ES |
dc.description.references | M. Giménez-Marqués , N.Calvo Galve, M.Palomino, S.Valencia, F.Rey, G.Sastre, I. J.Vitórica-Yrezábal, M.Jiménez-Ruiz, J. A.Rodríguez-Velamazán, M. A.González, E.Coronado and G.Mínguez Espallargas | es_ES |
dc.description.references | Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 | es_ES |
dc.description.references | Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography, 14(6), 357-361. doi:10.1107/s0021889881009618 | es_ES |
dc.description.references | Klinowski, J., Almeida Paz, F. A., Silva, P., & Rocha, J. (2011). Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans., 40(2), 321-330. doi:10.1039/c0dt00708k | es_ES |
dc.description.references | Aromí, G., Barrios, L. A., Roubeau, O., & Gamez, P. (2011). Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews, 255(5-6), 485-546. doi:10.1016/j.ccr.2010.10.038 | es_ES |
dc.description.references | Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656 | es_ES |
dc.description.references | Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966-4981. doi:10.1002/anie.200703934 | es_ES |
dc.description.references | Mason, J. A., McDonald, T. M., Bae, T.-H., Bachman, J. E., Sumida, K., Dutton, J. J., … Long, J. R. (2015). Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O. Journal of the American Chemical Society, 137(14), 4787-4803. doi:10.1021/jacs.5b00838 | es_ES |
dc.description.references | Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234 | es_ES |
dc.description.references | Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. (2008). Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130(33), 10870-10871. doi:10.1021/ja8036096 | es_ES |
dc.description.references | Calvo Galve, N., Coronado, E., Giménez-Marqués, M., & Mínguez Espallargas, G. (2014). A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer. Inorganic Chemistry, 53(9), 4482-4490. doi:10.1021/ic500141v | es_ES |
dc.description.references | Xiang, Z., & Cao, D. (2013). Porous covalent–organic materials: synthesis, clean energy application and design. J. Mater. Chem. A, 1(8), 2691-2718. doi:10.1039/c2ta00063f | es_ES |