Mostrar el registro sencillo del ítem
dc.contributor.author | Pellegrino, D. | es_ES |
dc.contributor.author | Rueda, P. | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2020-09-18T03:34:40Z | |
dc.date.available | 2020-09-18T03:34:40Z | |
dc.date.issued | 2016-06 | es_ES |
dc.identifier.issn | 1385-1292 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150310 | |
dc.description.abstract | [EN] A classical result by J. Diestel establishes that the composition of a summing operator with a (strongly measurable) Pettis integrable function gives a Bochner integrable function. In this paper we show that a much more general result is possible regarding the improvement of the integrability of vector valued functions by the summability of the operator. After proving a general result, we center our attention in the particular case given by the -absolutely continuous operators, that allows to prove a lot of special results on integration improvement for selected cases of classical Banach spaces-including C(K), and Hilbert spaces-and operators-p-summing, (q, p)-summing and p-approximable operators. | es_ES |
dc.description.sponsorship | D. Pellegrino acknowledges with thanks the support of CNPq Grant 401735/2013-3 (Brazil). P. Rueda acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2011-22417. E.A. Sanchez Perez acknowledges with thanks the support of the Ministerio de Economia y Competitividad (Spain) MTM2012-36740-C02-02. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Positivity | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Absolutely summing operator | es_ES |
dc.subject | Absolutely continuous operator | es_ES |
dc.subject | Pettis integrable function | es_ES |
dc.subject | Bochner integrable function | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Improving integrability via absolute summability: a general version of Diestel s Theorem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11117-015-0361-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//401735%2F2013-3-PVE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Pellegrino, D.; Rueda, P.; Sánchez Pérez, EA. (2016). Improving integrability via absolute summability: a general version of Diestel s Theorem. Positivity. 20(2):369-383. https://doi.org/10.1007/s11117-015-0361-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11117-015-0361-5 | es_ES |
dc.description.upvformatpinicio | 369 | es_ES |
dc.description.upvformatpfin | 383 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\313000 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Botelho, G., Pellegrino, D., Rueda, P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365(1), 269–276 (2010) | es_ES |
dc.description.references | Defant, A., Floret, K.: Tensor norms and operator ideals. North-Holland, Amsterdam (1992) | es_ES |
dc.description.references | Diestel, J.: An elementary characterization of absolutely summing operators. Math. Ann. 196, 101–105 (1972) | es_ES |
dc.description.references | Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge University Press, Cambridge (1995) | es_ES |
dc.description.references | Farmer, J., Johnson, W.B.: Lipschitz p-summing operators. Proc. Amer. Math. Soc. 137, 2989–2995 (2009) | es_ES |
dc.description.references | Jarchow, H.: Localy convex, spaces. Teubner, Stuttgart (1981) | es_ES |
dc.description.references | López Molina, J.A., Sánchez Pérez, E.A.: Ideales de operadores absolutamente continuos, Ciencias Exactas, Físicas y Naturales, Madrid. Rev. Real Acad. 87, 349–378 (1993) | es_ES |
dc.description.references | López Molina, J.A., Sánchez Pérez, E.A.: The associated tensor norm to $$(q, p)$$ ( q , p ) -absolutely summing operators on $$C(K)$$ C ( K ) -spaces. Czec. Math. J. 47(4), 627–631 (1997) | es_ES |
dc.description.references | López, J.A., Molina, Sánchez-Pérez, E.A.: On operator ideals related to $$(p,\sigma )$$ ( p , σ ) -absolutely continuous operator. Studia Math. 131(8), 25–40 (2000) | es_ES |
dc.description.references | Matter, U.: Absolute continuous operators and super-reflexivity. Math. Nachr. 130, 193–216 (1987) | es_ES |
dc.description.references | Pellegrino, D., Santos, J.: A general Pietsch domination theorem. J. Math. Anal. Appl. 375(1), 371–374 (2011) | es_ES |
dc.description.references | Pellegrino, D., Santos, J., Seoane-Sepúlveda, J.B.: Some techniques on nonlinear analysis and applications. Adv. Math. 229, 1235–1265 (2012) | es_ES |
dc.description.references | Pietsch, A.: Operator Ideals. Deutsch. Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam-London-New York-Tokyo (1980) | es_ES |
dc.description.references | Pisier, G.: Factorization of operators through $$L_{p\infty }$$ L p ∞ or $$ L_{p1}$$ L p 1 and noncommutative generalizations. Math. Ann. 276(1), 105–136 (1986) | es_ES |
dc.description.references | Rodríguez, J.: Absolutely summing operators and integration of vector-valued functions. J. Math. Anal. Appl. 316(2), 579–600 (2006) | es_ES |