Gozálvez-Zafrilla, JM.; Santafé Moros, MA.; Escolástico Rozalén, S.; Serra Alfaro, JM. (2011). Fluid Dynamic Modeling of Oxygen Permeation through Mixed Ionic-Electronic Conducting Membranes. Journal of Membrane Science. 378(1-2):290-300. https://doi.org/10.1016/j.memsci.2011.05.016
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150328
Título:
|
Fluid Dynamic Modeling of Oxygen Permeation through Mixed Ionic-Electronic Conducting Membranes
|
Autor:
|
Gozálvez-Zafrilla, José M.
Santafé Moros, María Asunción
Escolástico Rozalén, Sonia
Serra Alfaro, José Manuel
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
|
Fecha difusión:
|
|
Resumen:
|
[EN] The oxygen transport in a lab-scale experimental set-up for permeation testing of oxygen transport membranes has been modeled using computational fluid dynamics using Finite Element Analysis. The modeling considered ...[+]
[EN] The oxygen transport in a lab-scale experimental set-up for permeation testing of oxygen transport membranes has been modeled using computational fluid dynamics using Finite Element Analysis. The modeling considered gas hydrodynamics and oxygen diffusion in the gas phase and vacancy diffusion of oxygen in a perovskite disc-shaped membrane at 1273. K. In a first step, the model allowed obtaining the coefficient diffusion of oxygen. The parametric study showed that the set-up geometry and flow rate in the air compartment did not have major influence in the oxygen transport. However, very important polarization effects in the sweep-gas (argon) compartment were identified. The highest oxygen permeation flux and the lowest oxygen concentration on the membrane surface were obtained for the following conditions (in increasing order of importance): (1) a large gas inlet radius; (2) short gas inlet distance; and (3) a high gas flow rate. © 2011 Elsevier B.V.
[-]
|
Palabras clave:
|
CFD
,
Membrane
,
Oxygen permeation
,
Oxygen transport membrane
,
Permeation setup
,
Perovskite
,
Transport modeling
,
Air compartment
,
Conducting membrane
,
Dynamic modeling
,
Experimental setup
,
Gas inlet
,
Gasphase
,
Membrane surface
,
Oxygen concentrations
,
Oxygen diffusion
,
Oxygen transport
,
Oxygen-permeation flux
,
Parametric study
,
Permeation testing
,
Polarization effect
,
Vacancy diffusion
,
Argon
,
Composite membranes
,
Computational fluid dynamics
,
Finite element method
,
Flow rate
,
Gases
,
Membranes
,
Oxygen
,
Oxygen permeable membranes
,
Permeation
,
Surface diffusion
,
Transport properties
,
Oxygen vacancies
,
Article
,
Electronics
,
Finite element analysis
,
Gas flow
,
Geometry
,
Membrane permeability
,
Molecular dynamics Pparameter
,
Polarization
,
Priority journal
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Fuente:
|
Journal of Membrane Science. (issn:
0376-7388
)
|
DOI:
|
10.1016/j.memsci.2011.05.016
|
Editorial:
|
ELSEVIER SCIENCE BV
|
Versión del editor:
|
https://doi.org/10.1016/j.memsci.2011.05.016
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/FP7/228701/EU/NAnostructured Surface Activated ultra-thin Oxygen Transport Membrane/
info:eu-repo/grantAgreement/MICINN//ENE2008-06302/ES/BUSQUEDA DE NUEVOS MATERIALES CONDUCTORES DE OXIGENO E HIDROGENO EN ESTADO SOLIDO MEDIANTE QUIMICA COMBINATORIA/
info:eu-repo/grantAgreement/CSIC//JAE-Pre 08-0058/
|
Agradecimientos:
|
The Spanish Ministry for Science and Innovation (JAE-Pre 08-0058 grant and ENE2008-06302 project) and through FP7 NASA-OTM Project (NMP3-SL-2009-228701) is kindly acknowledged.
|
Tipo:
|
Artículo
|