- -

Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles

Show full item record

De La Torre Paredes, C.; Mondragón Martínez, L.; Coll Merino, MC.; García-Fernández, A.; Sancenón Galarza, F.; Martínez-Máñez, R.; Amorós, P.... (2015). Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 21(44):15506-15510. https://doi.org/10.1002/chem.201502413

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150334

Files in this item

Item Metadata

Title: Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles
Author: De la Torre Paredes, Cristina Mondragón Martínez, Laura Coll Merino, Mª Carmen García-Fernández, Alba Sancenón Galarza, Félix Martínez-Máñez, Ramón Amorós, Pedro Pérez Payá, Enrique Orzáez, Mar
UPV Unit: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Excessive apoptotic cell death is at the origin of several pathologies, such as degenerative disorders, stroke or ischemia-reperfusion damage. In this context, strategies to improve inhibition of apoptosis and other ...[+]
Subjects: Caspase 3 , Controlled release , Gated mesoporous materials , Nanoparticles , Peptides
Copyrigths: Reserva de todos los derechos
Source:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201502413
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/chem.201502413
Project ID:
info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
Thanks:
We thank the Spanish Government (Project MAT2012-38429-C04 and SAF2010-15512) and the Generalitat Valenciana (PROMETEOII/2014/061) for support. C.T. is grateful to the Spanish Ministry of Science and Innovation for her PhD ...[+]
Type: Artículo

References

Ariga, K., Ji, Q., McShane, M. J., Lvov, Y. M., Vinu, A., & Hill, J. P. (2011). Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 24(5), 728-737. doi:10.1021/cm202281m

Treccani, L., Yvonne Klein, T., Meder, F., Pardun, K., & Rezwan, K. (2013). Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomaterialia, 9(7), 7115-7150. doi:10.1016/j.actbio.2013.03.036

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 [+]
Ariga, K., Ji, Q., McShane, M. J., Lvov, Y. M., Vinu, A., & Hill, J. P. (2011). Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 24(5), 728-737. doi:10.1021/cm202281m

Treccani, L., Yvonne Klein, T., Meder, F., Pardun, K., & Rezwan, K. (2013). Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomaterialia, 9(7), 7115-7150. doi:10.1016/j.actbio.2013.03.036

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis. Angewandte Chemie, 118(20), 3290-3328. doi:10.1002/ange.200503075

Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g

Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u

Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986

Lu, C.-H., Willner, B., & Willner, I. (2013). DNA Nanotechnology: From Sensing and DNA Machines to Drug-Delivery Systems. ACS Nano, 7(10), 8320-8332. doi:10.1021/nn404613v

He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 21(16), 5845. doi:10.1039/c0jm03851b

Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086

Sun, Y.-L., Zhou, Y., Li, Q.-L., & Yang, Y.-W. (2013). Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chemical Communications, 49(79), 9033. doi:10.1039/c3cc45216f

Bernardos, A., Mondragón, L., Javakhishvili, I., Mas, N., de la Torre, C., Martínez-Máñez, R., … Amorós, P. (2012). Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 18(41), 13068-13078. doi:10.1002/chem.201200787

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663

Yin, M., Ju, E., Chen, Z., Li, Z., Ren, J., & Qu, X. (2014). Upconverting Nanoparticles with a Mesoporous TiO2Shell for Near-Infrared-Triggered Drug Delivery and Synergistic Targeted Cancer Therapy. Chemistry - A European Journal, 20(43), 14012-14017. doi:10.1002/chem.201403733

Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818

Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818

Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439

Yang, X., Pu, F., Chen, C., Ren, J., & Qu, X. (2012). An enzyme-responsive nanocontainer as an intelligent signal-amplification platform for a multiple proteases assay. Chemical Communications, 48(90), 11133. doi:10.1039/c2cc36340b

Mas, N., Agostini, A., Mondragón, L., Bernardos, A., Sancenón, F., Marcos, M. D., … Pérez-Payá, E. (2012). Enzyme-Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 19(4), 1346-1356. doi:10.1002/chem.201202740

Li, X., Tang, T., Zhou, Y., Zhang, Y., & Sun, Y. (2014). Applicability of enzyme-responsive mesoporous silica supports capped with bridged silsesquioxane for colon-specific drug delivery. Microporous and Mesoporous Materials, 184, 83-89. doi:10.1016/j.micromeso.2013.09.024

Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003

Zhu, Y., Meng, W., & Hanagata, N. (2011). Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Transactions, 40(39), 10203. doi:10.1039/c1dt11114k

Zhang, G., Yang, M., Cai, D., Zheng, K., Zhang, X., Wu, L., & Wu, Z. (2014). Composite of Functional Mesoporous Silica and DNA: An Enzyme-Responsive Controlled Release Drug Carrier System. ACS Applied Materials & Interfaces, 6(11), 8042-8047. doi:10.1021/am502154w

M. Bimbo, L., Peltonen, L., Hirvonen, J., & A. Santos, H. (2012). Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 13(8), 1068-1086. doi:10.2174/138920012802850047

Green, D. R. (2005). Pharmacological manipulation of cell death: clinical applications in sight? Journal of Clinical Investigation, 115(10), 2610-2617. doi:10.1172/jci26321

Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., … Melino, G. (2008). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death & Differentiation, 16(1), 3-11. doi:10.1038/cdd.2008.150

Jourdain, A., & Martinou, J.-C. (2009). Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. The International Journal of Biochemistry & Cell Biology, 41(10), 1884-1889. doi:10.1016/j.biocel.2009.05.001

Poreba, M., Strozyk, A., Salvesen, G. S., & Drag, M. (2013). Caspase Substrates and Inhibitors. Cold Spring Harbor Perspectives in Biology, 5(8), a008680-a008680. doi:10.1101/cshperspect.a008680

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie, 123(9), 2186-2188. doi:10.1002/ange.201004133

De la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Orzáez, M. (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 20(47), 15309-15314. doi:10.1002/chem.201404382

De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g

Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). Angewandte Chemie, 114(14), 2708-2711. doi:10.1002/1521-3757(20020715)114:14<2708::aid-ange2708>3.0.co;2-0

Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w

Brown, T. L. (s. f.). Q-VD-OPh, Next Generation Caspase Inhibitor. Advances in Experimental Medicine and Biology, 293-300. doi:10.1007/0-387-23752-6_26

BROOKS, H., LEBLEU, B., & VIVES, E. (2005). Tat peptide-mediated cellular delivery: back to basics. Advanced Drug Delivery Reviews, 57(4), 559-577. doi:10.1016/j.addr.2004.12.001

Farkhani, S. M., Valizadeh, A., Karami, H., Mohammadi, S., Sohrabi, N., & Badrzadeh, F. (2014). Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 57, 78-94. doi:10.1016/j.peptides.2014.04.015

Orzáez, M., Mondragón, L., Marzo, I., Sanclimens, G., Messeguer, À., Pérez-Payá, E., & Vicent, M. J. (2007). Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: Peptides, 28(5), 958-968. doi:10.1016/j.peptides.2007.02.014

Mondragón, L., Galluzzi, L., Mouhamad, S., Orzáez, M., Vicencio, J.-M., Vitale, I., … Kroemer, G. (2009). A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis, 14(2), 182-190. doi:10.1007/s10495-008-0310-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record