- -

Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author De la Torre Paredes, Cristina es_ES
dc.contributor.author Mondragón Martínez, Laura es_ES
dc.contributor.author Coll Merino, Mª Carmen es_ES
dc.contributor.author García-Fernández, Alba es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Amorós, Pedro es_ES
dc.contributor.author Pérez Payá, Enrique es_ES
dc.contributor.author Orzáez, Mar es_ES
dc.date.accessioned 2020-09-18T03:35:26Z
dc.date.available 2020-09-18T03:35:26Z
dc.date.issued 2015-10-26 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150334
dc.description.abstract [EN] Excessive apoptotic cell death is at the origin of several pathologies, such as degenerative disorders, stroke or ischemia-reperfusion damage. In this context, strategies to improve inhibition of apoptosis and other types of cell death are of interest and may represent a pharmacological opportunity for the treatment of cell-death-related disorders. In this scenario new peptide-containing delivery systems (solids S1-P1and S1-P2) are described based on meso-porous silica nanoparticles (MSNs) loaded with a dye and capped with the KKGDEVDKKARDEVDK (P1) peptide that contains two repeats of the DEVD target sequence that are selectively hydrolyzed by caspase3 (C3). This enzyme plays a central role in the execution-phase of apoptosis. HeLa cells electroporated with S1 P1are able to deliver the cargo in the presence of staurosporin (STS), which induces apoptosis with the consequent activation of the cytoplasmic C3 enzyme. Moreover, the nanoparticles S1-P2,containing both a cell-penetrating TAT peptide and P1 also entered in HeLa cells and delivered the cargo preferentially in cells treated with the apoptosis inducer cisplatin. es_ES
dc.description.sponsorship We thank the Spanish Government (Project MAT2012-38429-C04 and SAF2010-15512) and the Generalitat Valenciana (PROMETEOII/2014/061) for support. C.T. is grateful to the Spanish Ministry of Science and Innovation for her PhD fellowship. L.M. thanks the Generalitat Valenciana (VALI+D program), Nice city council ("Aides Individuelles aux Jeunes Chercheurs - 2011") and Fondation de la Recherche Medicale for her postdoctoral contracts. C.C. thanks the Generalitat Valenciana for their postdoctoral contract VALI+D. We thank the confocal microscopy service, Alberto Hernandez from CIPF confocal microscopy service for their technical support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Caspase 3 es_ES
dc.subject Controlled release es_ES
dc.subject Gated mesoporous materials es_ES
dc.subject Nanoparticles es_ES
dc.subject Peptides es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201502413 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation De La Torre Paredes, C.; Mondragón Martínez, L.; Coll Merino, MC.; García-Fernández, A.; Sancenón Galarza, F.; Martínez-Máñez, R.; Amorós, P.... (2015). Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 21(44):15506-15510. https://doi.org/10.1002/chem.201502413 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201502413 es_ES
dc.description.upvformatpinicio 15506 es_ES
dc.description.upvformatpfin 15510 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 44 es_ES
dc.identifier.pmid 26493876 es_ES
dc.relation.pasarela S\299637 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Ariga, K., Ji, Q., McShane, M. J., Lvov, Y. M., Vinu, A., & Hill, J. P. (2011). Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 24(5), 728-737. doi:10.1021/cm202281m es_ES
dc.description.references Treccani, L., Yvonne Klein, T., Meder, F., Pardun, K., & Rezwan, K. (2013). Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomaterialia, 9(7), 7115-7150. doi:10.1016/j.actbio.2013.03.036 es_ES
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 es_ES
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis. Angewandte Chemie, 118(20), 3290-3328. doi:10.1002/ange.200503075 es_ES
dc.description.references Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 es_ES
dc.description.references Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 es_ES
dc.description.references Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d es_ES
dc.description.references Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g es_ES
dc.description.references Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u es_ES
dc.description.references Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 es_ES
dc.description.references Lu, C.-H., Willner, B., & Willner, I. (2013). DNA Nanotechnology: From Sensing and DNA Machines to Drug-Delivery Systems. ACS Nano, 7(10), 8320-8332. doi:10.1021/nn404613v es_ES
dc.description.references He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 21(16), 5845. doi:10.1039/c0jm03851b es_ES
dc.description.references Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 es_ES
dc.description.references Sun, Y.-L., Zhou, Y., Li, Q.-L., & Yang, Y.-W. (2013). Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chemical Communications, 49(79), 9033. doi:10.1039/c3cc45216f es_ES
dc.description.references Bernardos, A., Mondragón, L., Javakhishvili, I., Mas, N., de la Torre, C., Martínez-Máñez, R., … Amorós, P. (2012). Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 18(41), 13068-13078. doi:10.1002/chem.201200787 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 es_ES
dc.description.references Yin, M., Ju, E., Chen, Z., Li, Z., Ren, J., & Qu, X. (2014). Upconverting Nanoparticles with a Mesoporous TiO2Shell for Near-Infrared-Triggered Drug Delivery and Synergistic Targeted Cancer Therapy. Chemistry - A European Journal, 20(43), 14012-14017. doi:10.1002/chem.201403733 es_ES
dc.description.references Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818 es_ES
dc.description.references Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818 es_ES
dc.description.references Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439 es_ES
dc.description.references Yang, X., Pu, F., Chen, C., Ren, J., & Qu, X. (2012). An enzyme-responsive nanocontainer as an intelligent signal-amplification platform for a multiple proteases assay. Chemical Communications, 48(90), 11133. doi:10.1039/c2cc36340b es_ES
dc.description.references Mas, N., Agostini, A., Mondragón, L., Bernardos, A., Sancenón, F., Marcos, M. D., … Pérez-Payá, E. (2012). Enzyme-Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 19(4), 1346-1356. doi:10.1002/chem.201202740 es_ES
dc.description.references Li, X., Tang, T., Zhou, Y., Zhang, Y., & Sun, Y. (2014). Applicability of enzyme-responsive mesoporous silica supports capped with bridged silsesquioxane for colon-specific drug delivery. Microporous and Mesoporous Materials, 184, 83-89. doi:10.1016/j.micromeso.2013.09.024 es_ES
dc.description.references Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003 es_ES
dc.description.references Zhu, Y., Meng, W., & Hanagata, N. (2011). Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Transactions, 40(39), 10203. doi:10.1039/c1dt11114k es_ES
dc.description.references Zhang, G., Yang, M., Cai, D., Zheng, K., Zhang, X., Wu, L., & Wu, Z. (2014). Composite of Functional Mesoporous Silica and DNA: An Enzyme-Responsive Controlled Release Drug Carrier System. ACS Applied Materials & Interfaces, 6(11), 8042-8047. doi:10.1021/am502154w es_ES
dc.description.references M. Bimbo, L., Peltonen, L., Hirvonen, J., & A. Santos, H. (2012). Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 13(8), 1068-1086. doi:10.2174/138920012802850047 es_ES
dc.description.references Green, D. R. (2005). Pharmacological manipulation of cell death: clinical applications in sight? Journal of Clinical Investigation, 115(10), 2610-2617. doi:10.1172/jci26321 es_ES
dc.description.references Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., … Melino, G. (2008). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death & Differentiation, 16(1), 3-11. doi:10.1038/cdd.2008.150 es_ES
dc.description.references Jourdain, A., & Martinou, J.-C. (2009). Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. The International Journal of Biochemistry & Cell Biology, 41(10), 1884-1889. doi:10.1016/j.biocel.2009.05.001 es_ES
dc.description.references Poreba, M., Strozyk, A., Salvesen, G. S., & Drag, M. (2013). Caspase Substrates and Inhibitors. Cold Spring Harbor Perspectives in Biology, 5(8), a008680-a008680. doi:10.1101/cshperspect.a008680 es_ES
dc.description.references Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133 es_ES
dc.description.references Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie, 123(9), 2186-2188. doi:10.1002/ange.201004133 es_ES
dc.description.references De la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Orzáez, M. (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 20(47), 15309-15314. doi:10.1002/chem.201404382 es_ES
dc.description.references De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g es_ES
dc.description.references Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 es_ES
dc.description.references Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). Angewandte Chemie, 114(14), 2708-2711. doi:10.1002/1521-3757(20020715)114:14<2708::aid-ange2708>3.0.co;2-0 es_ES
dc.description.references Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w es_ES
dc.description.references Brown, T. L. (s. f.). Q-VD-OPh, Next Generation Caspase Inhibitor. Advances in Experimental Medicine and Biology, 293-300. doi:10.1007/0-387-23752-6_26 es_ES
dc.description.references BROOKS, H., LEBLEU, B., & VIVES, E. (2005). Tat peptide-mediated cellular delivery: back to basics. Advanced Drug Delivery Reviews, 57(4), 559-577. doi:10.1016/j.addr.2004.12.001 es_ES
dc.description.references Farkhani, S. M., Valizadeh, A., Karami, H., Mohammadi, S., Sohrabi, N., & Badrzadeh, F. (2014). Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 57, 78-94. doi:10.1016/j.peptides.2014.04.015 es_ES
dc.description.references Orzáez, M., Mondragón, L., Marzo, I., Sanclimens, G., Messeguer, À., Pérez-Payá, E., & Vicent, M. J. (2007). Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: Peptides, 28(5), 958-968. doi:10.1016/j.peptides.2007.02.014 es_ES
dc.description.references Mondragón, L., Galluzzi, L., Mouhamad, S., Orzáez, M., Vicencio, J.-M., Vitale, I., … Kroemer, G. (2009). A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis, 14(2), 182-190. doi:10.1007/s10495-008-0310-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem