Mostrar el registro sencillo del ítem
dc.contributor.author | De la Torre Paredes, Cristina | es_ES |
dc.contributor.author | Mondragón Martínez, Laura | es_ES |
dc.contributor.author | Coll Merino, Mª Carmen | es_ES |
dc.contributor.author | García-Fernández, Alba | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Amorós, Pedro | es_ES |
dc.contributor.author | Pérez Payá, Enrique | es_ES |
dc.contributor.author | Orzáez, Mar | es_ES |
dc.date.accessioned | 2020-09-18T03:35:26Z | |
dc.date.available | 2020-09-18T03:35:26Z | |
dc.date.issued | 2015-10-26 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150334 | |
dc.description.abstract | [EN] Excessive apoptotic cell death is at the origin of several pathologies, such as degenerative disorders, stroke or ischemia-reperfusion damage. In this context, strategies to improve inhibition of apoptosis and other types of cell death are of interest and may represent a pharmacological opportunity for the treatment of cell-death-related disorders. In this scenario new peptide-containing delivery systems (solids S1-P1and S1-P2) are described based on meso-porous silica nanoparticles (MSNs) loaded with a dye and capped with the KKGDEVDKKARDEVDK (P1) peptide that contains two repeats of the DEVD target sequence that are selectively hydrolyzed by caspase3 (C3). This enzyme plays a central role in the execution-phase of apoptosis. HeLa cells electroporated with S1 P1are able to deliver the cargo in the presence of staurosporin (STS), which induces apoptosis with the consequent activation of the cytoplasmic C3 enzyme. Moreover, the nanoparticles S1-P2,containing both a cell-penetrating TAT peptide and P1 also entered in HeLa cells and delivered the cargo preferentially in cells treated with the apoptosis inducer cisplatin. | es_ES |
dc.description.sponsorship | We thank the Spanish Government (Project MAT2012-38429-C04 and SAF2010-15512) and the Generalitat Valenciana (PROMETEOII/2014/061) for support. C.T. is grateful to the Spanish Ministry of Science and Innovation for her PhD fellowship. L.M. thanks the Generalitat Valenciana (VALI+D program), Nice city council ("Aides Individuelles aux Jeunes Chercheurs - 2011") and Fondation de la Recherche Medicale for her postdoctoral contracts. C.C. thanks the Generalitat Valenciana for their postdoctoral contract VALI+D. We thank the confocal microscopy service, Alberto Hernandez from CIPF confocal microscopy service for their technical support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Caspase 3 | es_ES |
dc.subject | Controlled release | es_ES |
dc.subject | Gated mesoporous materials | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Peptides | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201502413 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | De La Torre Paredes, C.; Mondragón Martínez, L.; Coll Merino, MC.; García-Fernández, A.; Sancenón Galarza, F.; Martínez-Máñez, R.; Amorós, P.... (2015). Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 21(44):15506-15510. https://doi.org/10.1002/chem.201502413 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201502413 | es_ES |
dc.description.upvformatpinicio | 15506 | es_ES |
dc.description.upvformatpfin | 15510 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 44 | es_ES |
dc.identifier.pmid | 26493876 | es_ES |
dc.relation.pasarela | S\299637 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Ariga, K., Ji, Q., McShane, M. J., Lvov, Y. M., Vinu, A., & Hill, J. P. (2011). Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 24(5), 728-737. doi:10.1021/cm202281m | es_ES |
dc.description.references | Treccani, L., Yvonne Klein, T., Meder, F., Pardun, K., & Rezwan, K. (2013). Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomaterialia, 9(7), 7115-7150. doi:10.1016/j.actbio.2013.03.036 | es_ES |
dc.description.references | Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 | es_ES |
dc.description.references | Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis. Angewandte Chemie, 118(20), 3290-3328. doi:10.1002/ange.200503075 | es_ES |
dc.description.references | Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 | es_ES |
dc.description.references | Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 | es_ES |
dc.description.references | Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d | es_ES |
dc.description.references | Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g | es_ES |
dc.description.references | Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u | es_ES |
dc.description.references | Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 | es_ES |
dc.description.references | Lu, C.-H., Willner, B., & Willner, I. (2013). DNA Nanotechnology: From Sensing and DNA Machines to Drug-Delivery Systems. ACS Nano, 7(10), 8320-8332. doi:10.1021/nn404613v | es_ES |
dc.description.references | He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 21(16), 5845. doi:10.1039/c0jm03851b | es_ES |
dc.description.references | Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 | es_ES |
dc.description.references | Sun, Y.-L., Zhou, Y., Li, Q.-L., & Yang, Y.-W. (2013). Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chemical Communications, 49(79), 9033. doi:10.1039/c3cc45216f | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Javakhishvili, I., Mas, N., de la Torre, C., Martínez-Máñez, R., … Amorós, P. (2012). Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 18(41), 13068-13078. doi:10.1002/chem.201200787 | es_ES |
dc.description.references | Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 | es_ES |
dc.description.references | Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 | es_ES |
dc.description.references | Yin, M., Ju, E., Chen, Z., Li, Z., Ren, J., & Qu, X. (2014). Upconverting Nanoparticles with a Mesoporous TiO2Shell for Near-Infrared-Triggered Drug Delivery and Synergistic Targeted Cancer Therapy. Chemistry - A European Journal, 20(43), 14012-14017. doi:10.1002/chem.201403733 | es_ES |
dc.description.references | Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818 | es_ES |
dc.description.references | Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818 | es_ES |
dc.description.references | Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439 | es_ES |
dc.description.references | Yang, X., Pu, F., Chen, C., Ren, J., & Qu, X. (2012). An enzyme-responsive nanocontainer as an intelligent signal-amplification platform for a multiple proteases assay. Chemical Communications, 48(90), 11133. doi:10.1039/c2cc36340b | es_ES |
dc.description.references | Mas, N., Agostini, A., Mondragón, L., Bernardos, A., Sancenón, F., Marcos, M. D., … Pérez-Payá, E. (2012). Enzyme-Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 19(4), 1346-1356. doi:10.1002/chem.201202740 | es_ES |
dc.description.references | Li, X., Tang, T., Zhou, Y., Zhang, Y., & Sun, Y. (2014). Applicability of enzyme-responsive mesoporous silica supports capped with bridged silsesquioxane for colon-specific drug delivery. Microporous and Mesoporous Materials, 184, 83-89. doi:10.1016/j.micromeso.2013.09.024 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003 | es_ES |
dc.description.references | Zhu, Y., Meng, W., & Hanagata, N. (2011). Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Transactions, 40(39), 10203. doi:10.1039/c1dt11114k | es_ES |
dc.description.references | Zhang, G., Yang, M., Cai, D., Zheng, K., Zhang, X., Wu, L., & Wu, Z. (2014). Composite of Functional Mesoporous Silica and DNA: An Enzyme-Responsive Controlled Release Drug Carrier System. ACS Applied Materials & Interfaces, 6(11), 8042-8047. doi:10.1021/am502154w | es_ES |
dc.description.references | M. Bimbo, L., Peltonen, L., Hirvonen, J., & A. Santos, H. (2012). Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 13(8), 1068-1086. doi:10.2174/138920012802850047 | es_ES |
dc.description.references | Green, D. R. (2005). Pharmacological manipulation of cell death: clinical applications in sight? Journal of Clinical Investigation, 115(10), 2610-2617. doi:10.1172/jci26321 | es_ES |
dc.description.references | Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., … Melino, G. (2008). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death & Differentiation, 16(1), 3-11. doi:10.1038/cdd.2008.150 | es_ES |
dc.description.references | Jourdain, A., & Martinou, J.-C. (2009). Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. The International Journal of Biochemistry & Cell Biology, 41(10), 1884-1889. doi:10.1016/j.biocel.2009.05.001 | es_ES |
dc.description.references | Poreba, M., Strozyk, A., Salvesen, G. S., & Drag, M. (2013). Caspase Substrates and Inhibitors. Cold Spring Harbor Perspectives in Biology, 5(8), a008680-a008680. doi:10.1101/cshperspect.a008680 | es_ES |
dc.description.references | Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133 | es_ES |
dc.description.references | Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie, 123(9), 2186-2188. doi:10.1002/ange.201004133 | es_ES |
dc.description.references | De la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Orzáez, M. (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 20(47), 15309-15314. doi:10.1002/chem.201404382 | es_ES |
dc.description.references | De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g | es_ES |
dc.description.references | Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 | es_ES |
dc.description.references | Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 | es_ES |
dc.description.references | Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). Angewandte Chemie, 114(14), 2708-2711. doi:10.1002/1521-3757(20020715)114:14<2708::aid-ange2708>3.0.co;2-0 | es_ES |
dc.description.references | Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w | es_ES |
dc.description.references | Brown, T. L. (s. f.). Q-VD-OPh, Next Generation Caspase Inhibitor. Advances in Experimental Medicine and Biology, 293-300. doi:10.1007/0-387-23752-6_26 | es_ES |
dc.description.references | BROOKS, H., LEBLEU, B., & VIVES, E. (2005). Tat peptide-mediated cellular delivery: back to basics. Advanced Drug Delivery Reviews, 57(4), 559-577. doi:10.1016/j.addr.2004.12.001 | es_ES |
dc.description.references | Farkhani, S. M., Valizadeh, A., Karami, H., Mohammadi, S., Sohrabi, N., & Badrzadeh, F. (2014). Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 57, 78-94. doi:10.1016/j.peptides.2014.04.015 | es_ES |
dc.description.references | Orzáez, M., Mondragón, L., Marzo, I., Sanclimens, G., Messeguer, À., Pérez-Payá, E., & Vicent, M. J. (2007). Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: Peptides, 28(5), 958-968. doi:10.1016/j.peptides.2007.02.014 | es_ES |
dc.description.references | Mondragón, L., Galluzzi, L., Mouhamad, S., Orzáez, M., Vicencio, J.-M., Vitale, I., … Kroemer, G. (2009). A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis, 14(2), 182-190. doi:10.1007/s10495-008-0310-x | es_ES |