- -

Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness

Show full item record

Galindo-Galiana, B.; Benedito-Borrás, A.; Ramos, F.; Giménez Torres, E. (2016). Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness. Polymer Engineering & Science. 56(12):1321-1329. https://doi.org/10.1002/pen.24365

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150350

Files in this item

Item Metadata

Title: Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness
Author: Galindo-Galiana, Begoña Benedito-Borrás, Adolfo Ramos, Fernando Giménez Torres, Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Carbon nanotubes dispersion within the polymer matrix is a very important factor to take into account when developing new nanocomposites with optimized properties. In this article, dispersion studies have been carried ...[+]
Subjects: Composites , Matrix , Nanocomposites , Polyethylene
Copyrigths: Reserva de todos los derechos
Source:
Polymer Engineering & Science. (issn: 0032-3888 )
DOI: 10.1002/pen.24365
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/pen.24365
Description: "This is the peer reviewed version of the following article: Galindo, Begoña, Adolfo Benedito, Fernando Ramos, and Enrique Gimenez. 2016. Microwave Heating of Polymers: Influence of Carbon Nanotubes Dispersion on the Microwave Susceptor Effectiveness. Polymer Engineering & Science 56 (12). Wiley: 1321 29. doi:10.1002/pen.24365, which has been published in final form at https://doi.org/10.1002/pen.24365. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Type: Artículo

References

Ku, H. S., Siu, F., Siores, E., & Ball, J. A. R. (2003). Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites. Journal of Materials Processing Technology, 139(1-3), 291-295. doi:10.1016/s0924-0136(03)00238-3

Ku, H. S., MacRobert, M., Siores, E., & Ball, J. A. R. (2000). Variable frequency microwave processing of thermoplastic composites. Plastics, Rubber and Composites, 29(6), 278-284. doi:10.1179/146580100101541076

Williams, N. H. (1967). Curing Epoxy Resin Impregnates Pipe at 2450 Megahertz. Journal of Microwave Power, 2(4), 123-127. doi:10.1080/00222739.1967.11688661 [+]
Ku, H. S., Siu, F., Siores, E., & Ball, J. A. R. (2003). Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites. Journal of Materials Processing Technology, 139(1-3), 291-295. doi:10.1016/s0924-0136(03)00238-3

Ku, H. S., MacRobert, M., Siores, E., & Ball, J. A. R. (2000). Variable frequency microwave processing of thermoplastic composites. Plastics, Rubber and Composites, 29(6), 278-284. doi:10.1179/146580100101541076

Williams, N. H. (1967). Curing Epoxy Resin Impregnates Pipe at 2450 Megahertz. Journal of Microwave Power, 2(4), 123-127. doi:10.1080/00222739.1967.11688661

Antonio, C., & Deam, R. T. (2005). Comparison of linear and non-linear sweep rate regimes in variable frequency microwave technique for uniform heating in materials processing. Journal of Materials Processing Technology, 169(2), 234-241. doi:10.1016/j.jmatprotec.2005.03.024

I. Gómez J. Aguilar Ciencia UANL 2005

AGUILAR-GARIB, J. A., GARCÍA, F., & VALDEZ, Z. (2009). Estimating resistive and dielectric effects during microwave heating of Fe0.22Ni0.67Mn2.11O4. Journal of the Ceramic Society of Japan, 117(1367), 801-807. doi:10.2109/jcersj2.117.801

Harper, J., Price, D., & Zhang, J. (2005). Use of Fillers to Enable the Microwave Processing of Polyethylene. Journal of Microwave Power and Electromagnetic Energy, 40(4), 219-227. doi:10.1080/08327823.2005.11688543

Ling, Q., Sun, J., Zhao, Q., & Zhou, Q. (2009). Microwave absorbing properties of linear low density polyethylene/ethylene–octene copolymer composites filled with short carbon fiber. Materials Science and Engineering: B, 162(3), 162-166. doi:10.1016/j.mseb.2009.03.023

Shim, H. C., Kwak, Y. K., Han, C.-S., & Kim, S. (2009). Enhancement of adhesion between carbon nanotubes and polymer substrates using microwave irradiation. Scripta Materialia, 61(1), 32-35. doi:10.1016/j.scriptamat.2009.02.060

Xie, R., Wang, J., Yang, Y., Jiang, K., Li, Q., & Fan, S. (2011). Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Composites Science and Technology, 72(1), 85-90. doi:10.1016/j.compscitech.2011.10.003

Wadhawan, A., Garrett, D., & Perez, J. M. (2003). Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes. Applied Physics Letters, 83(13), 2683-2685. doi:10.1063/1.1615679

F. Naab M. Dhoubhadel O.W. Holland J.L. Duggan J. Roberts F.D. McDaniel Proceedings Of the International Conference on PIXE and its Analytical Applications Portoroz Slovenia 2004

Mack, C., Sathyanarayana, S., Weiss, P., Mikonsaari, I., Hübner, C., Henning, F., & Elsner, P. (2012). Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties. IOP Conference Series: Materials Science and Engineering, 40, 012020. doi:10.1088/1757-899x/40/1/012020

Castillo, F. Y., Socher, R., Krause, B., Headrick, R., Grady, B. P., Prada-Silvy, R., & Pötschke, P. (2011). Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer, 52(17), 3835-3845. doi:10.1016/j.polymer.2011.06.018

Coleman, J. N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K. P., Belton, C., … Blau, W. J. (2004). High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Advanced Functional Materials, 14(8), 791-798. doi:10.1002/adfm.200305200

Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. doi:10.1016/j.compscitech.2008.07.007

Prashantha, K., Soulestin, J., Lacrampe, M. F., Claes, M., Dupin, G., & Krawczak, P. (2008). Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2(10), 735-745. doi:10.3144/expresspolymlett.2008.87

Benedito, A., Buezas, I., Giménez, E., Galindo, B., & Ortega, A. (2011). Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes by melt mixing. Journal of Applied Polymer Science, 122(6), 3744-3750. doi:10.1002/app.34788

Villmow, T., Pötschke, P., Pegel, S., Häussler, L., & Kretzschmar, B. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer, 49(16), 3500-3509. doi:10.1016/j.polymer.2008.06.010

Kasaliwal, G. R., Göldel, A., Pötschke, P., & Heinrich, G. (2011). Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer, 52(4), 1027-1036. doi:10.1016/j.polymer.2011.01.007

Krause, B., Boldt, R., & Pötschke, P. (2011). A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing. Carbon, 49(4), 1243-1247. doi:10.1016/j.carbon.2010.11.042

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record