- -

Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo-Galiana, Begoña es_ES
dc.contributor.author Benedito-Borrás, Adolfo es_ES
dc.contributor.author Ramos, Fernando es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.date.accessioned 2020-09-18T03:36:01Z
dc.date.available 2020-09-18T03:36:01Z
dc.date.issued 2016-12 es_ES
dc.identifier.issn 0032-3888 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150350
dc.description "This is the peer reviewed version of the following article: Galindo, Begoña, Adolfo Benedito, Fernando Ramos, and Enrique Gimenez. 2016. Microwave Heating of Polymers: Influence of Carbon Nanotubes Dispersion on the Microwave Susceptor Effectiveness. Polymer Engineering & Science 56 (12). Wiley: 1321 29. doi:10.1002/pen.24365, which has been published in final form at https://doi.org/10.1002/pen.24365. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Carbon nanotubes dispersion within the polymer matrix is a very important factor to take into account when developing new nanocomposites with optimized properties. In this article, dispersion studies have been carried out with polypropylene filled with 1% of multiwall carbon nanotubes. The nanocomposites were obtained by melt compounding in a corotative twin screw extruder. Processing parameters as screw speed, screw configuration and feeding technology were modified to analyse their effect onto carbon nanotubes dispersion. Developed nanocomposites were exposed to microwave heating (5.8 GHz, 700 W, 60 min) and heating temperature was monitored. The relation between dispersion level of carbon nanotubes and heating effectiveness was studied. Microwave heating efficiency of carbon nanotubes was increased as dispersion was improved. Electrical conductivity of nanocomposites was measured and used as indirect variable of microwave heating susceptor of carbon nanotubes nanocomposites. Higher electrical conductivity indicates a better microwave susceptor propertiy of the nanocomposite. (C) 2016 Society of Plastics Engineers es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Polymer Engineering & Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composites es_ES
dc.subject Matrix es_ES
dc.subject Nanocomposites es_ES
dc.subject Polyethylene es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pen.24365 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Galindo-Galiana, B.; Benedito-Borrás, A.; Ramos, F.; Giménez Torres, E. (2016). Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness. Polymer Engineering & Science. 56(12):1321-1329. https://doi.org/10.1002/pen.24365 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pen.24365 es_ES
dc.description.upvformatpinicio 1321 es_ES
dc.description.upvformatpfin 1329 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\334731 es_ES
dc.description.references Ku, H. S., Siu, F., Siores, E., & Ball, J. A. R. (2003). Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites. Journal of Materials Processing Technology, 139(1-3), 291-295. doi:10.1016/s0924-0136(03)00238-3 es_ES
dc.description.references Ku, H. S., MacRobert, M., Siores, E., & Ball, J. A. R. (2000). Variable frequency microwave processing of thermoplastic composites. Plastics, Rubber and Composites, 29(6), 278-284. doi:10.1179/146580100101541076 es_ES
dc.description.references Williams, N. H. (1967). Curing Epoxy Resin Impregnates Pipe at 2450 Megahertz. Journal of Microwave Power, 2(4), 123-127. doi:10.1080/00222739.1967.11688661 es_ES
dc.description.references Antonio, C., & Deam, R. T. (2005). Comparison of linear and non-linear sweep rate regimes in variable frequency microwave technique for uniform heating in materials processing. Journal of Materials Processing Technology, 169(2), 234-241. doi:10.1016/j.jmatprotec.2005.03.024 es_ES
dc.description.references I. Gómez J. Aguilar Ciencia UANL 2005 es_ES
dc.description.references AGUILAR-GARIB, J. A., GARCÍA, F., & VALDEZ, Z. (2009). Estimating resistive and dielectric effects during microwave heating of Fe0.22Ni0.67Mn2.11O4. Journal of the Ceramic Society of Japan, 117(1367), 801-807. doi:10.2109/jcersj2.117.801 es_ES
dc.description.references Harper, J., Price, D., & Zhang, J. (2005). Use of Fillers to Enable the Microwave Processing of Polyethylene. Journal of Microwave Power and Electromagnetic Energy, 40(4), 219-227. doi:10.1080/08327823.2005.11688543 es_ES
dc.description.references Ling, Q., Sun, J., Zhao, Q., & Zhou, Q. (2009). Microwave absorbing properties of linear low density polyethylene/ethylene–octene copolymer composites filled with short carbon fiber. Materials Science and Engineering: B, 162(3), 162-166. doi:10.1016/j.mseb.2009.03.023 es_ES
dc.description.references Shim, H. C., Kwak, Y. K., Han, C.-S., & Kim, S. (2009). Enhancement of adhesion between carbon nanotubes and polymer substrates using microwave irradiation. Scripta Materialia, 61(1), 32-35. doi:10.1016/j.scriptamat.2009.02.060 es_ES
dc.description.references Xie, R., Wang, J., Yang, Y., Jiang, K., Li, Q., & Fan, S. (2011). Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Composites Science and Technology, 72(1), 85-90. doi:10.1016/j.compscitech.2011.10.003 es_ES
dc.description.references Wadhawan, A., Garrett, D., & Perez, J. M. (2003). Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes. Applied Physics Letters, 83(13), 2683-2685. doi:10.1063/1.1615679 es_ES
dc.description.references F. Naab M. Dhoubhadel O.W. Holland J.L. Duggan J. Roberts F.D. McDaniel Proceedings Of the International Conference on PIXE and its Analytical Applications Portoroz Slovenia 2004 es_ES
dc.description.references Mack, C., Sathyanarayana, S., Weiss, P., Mikonsaari, I., Hübner, C., Henning, F., & Elsner, P. (2012). Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties. IOP Conference Series: Materials Science and Engineering, 40, 012020. doi:10.1088/1757-899x/40/1/012020 es_ES
dc.description.references Castillo, F. Y., Socher, R., Krause, B., Headrick, R., Grady, B. P., Prada-Silvy, R., & Pötschke, P. (2011). Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer, 52(17), 3835-3845. doi:10.1016/j.polymer.2011.06.018 es_ES
dc.description.references Coleman, J. N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K. P., Belton, C., … Blau, W. J. (2004). High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Advanced Functional Materials, 14(8), 791-798. doi:10.1002/adfm.200305200 es_ES
dc.description.references Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. doi:10.1016/j.compscitech.2008.07.007 es_ES
dc.description.references Prashantha, K., Soulestin, J., Lacrampe, M. F., Claes, M., Dupin, G., & Krawczak, P. (2008). Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2(10), 735-745. doi:10.3144/expresspolymlett.2008.87 es_ES
dc.description.references Benedito, A., Buezas, I., Giménez, E., Galindo, B., & Ortega, A. (2011). Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes by melt mixing. Journal of Applied Polymer Science, 122(6), 3744-3750. doi:10.1002/app.34788 es_ES
dc.description.references Villmow, T., Pötschke, P., Pegel, S., Häussler, L., & Kretzschmar, B. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer, 49(16), 3500-3509. doi:10.1016/j.polymer.2008.06.010 es_ES
dc.description.references Kasaliwal, G. R., Göldel, A., Pötschke, P., & Heinrich, G. (2011). Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer, 52(4), 1027-1036. doi:10.1016/j.polymer.2011.01.007 es_ES
dc.description.references Krause, B., Boldt, R., & Pötschke, P. (2011). A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing. Carbon, 49(4), 1243-1247. doi:10.1016/j.carbon.2010.11.042 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem