- -

Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells

Show full item record

Valdes, T.; Rodríguez Jimenez, FJ.; García Cruz, DM.; Escobar Ivirico, JL.; Alastrue, A.; Erceg, S.; Monleón Pradas, M.... (2015). Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. Journal of Tissue Engineering and Regenerative Medicine. 9(6):734-739. https://doi.org/10.1002/term.1735

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150351

Files in this item

Item Metadata

Title: Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells
Author: Valdes, Teresa Rodríguez Jimenez, F. J. García Cruz, Dunia Mercedes Escobar Ivirico, Jorge Luis Alastrue, Ana Erceg, Slaven Monleón Pradas, Manuel Moreno-Manzano, Victoria
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Spinal cord injury (SCI) is a cause of paralysis. Although some strategies have been proposed to palliate the severity of this condition, so far no effective therapies have been found to reverse it. Recently, we have ...[+]
Subjects: Biomaterials , Ependymal stem cells , Pharmacology , Spinal cord injury
Copyrigths: Cerrado
Source:
Journal of Tissue Engineering and Regenerative Medicine. (issn: 1932-6254 )
DOI: 10.1002/term.1735
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/term.1735
Project ID:
info:eu-repo/grantAgreement/MICINN//10%2F01683/ES/REGENERACION DE LA FUNCION MOTORA TRAS LESION MEDULAR TRAUMATICA: ACTIVACION DEL POTENCIAL REGENERADOR ENDOGENO/
info:eu-repo/grantAgreement/MICINN//CSD2008-00005/ES/La Iniciativa Española en Canales Iónicos/
Thanks:
We are especially grateful to Richard Griffeth for his English-language editing. We also thank the Confocal Microscopy and the Electron Microscopy services of the Centro de Investigacion Principe Felipe (Valencia, Spain). ...[+]
Type: Artículo

References

Goritz, C., Dias, D. O., Tomilin, N., Barbacid, M., Shupliakov, O., & Frisen, J. (2011). A Pericyte Origin of Spinal Cord Scar Tissue. Science, 333(6039), 238-242. doi:10.1126/science.1203165

Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792

Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400 [+]
Goritz, C., Dias, D. O., Tomilin, N., Barbacid, M., Shupliakov, O., & Frisen, J. (2011). A Pericyte Origin of Spinal Cord Scar Tissue. Science, 333(6039), 238-242. doi:10.1126/science.1203165

Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792

Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400

Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System. Cell, 96(1), 25-34. doi:10.1016/s0092-8674(00)80956-3

Madigan, N. N., McMahon, S., O’Brien, T., Yaszemski, M. J., & Windebank, A. J. (2009). Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respiratory Physiology & Neurobiology, 169(2), 183-199. doi:10.1016/j.resp.2009.08.015

Moreno-Manzano, V., Rodríguez-Jiménez, F. J., Aceña-Bonilla, J. L., Fustero-Lardíes, S., Erceg, S., Dopazo, J., … Sánchez-Puelles, J. M. (2009). FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status. Journal of Biological Chemistry, 285(2), 1333-1342. doi:10.1074/jbc.m109.008326

Moreno-Manzano, V., Rodríguez-Jiménez, F. J., García-Roselló, M., Laínez, S., Erceg, S., Calvo, M. T., … Stojkovic, M. (2009). Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells, 27(3), 733-743. doi:10.1002/stem.24

Oliveira, A. L., Sousa, E. C., Silva, N. A., Sousa, N., Salgado, A. J., & Reis, R. L. (2012). Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. Journal of Materials Science: Materials in Medicine, 23(11), 2821-2830. doi:10.1007/s10856-012-4741-0

Reid, A. J., Sun, M., Wiberg, M., Downes, S., Terenghi, G., & Kingham, P. J. (2011). Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 199, 515-522. doi:10.1016/j.neuroscience.2011.09.064

Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Erceg, S., Stojkovic, M., & Moreno-Manzano, V. (2012). FM19G11 Favors Spinal Cord Injury Regeneration and Stem Cell Self-Renewal by Mitochondrial Uncoupling and Glucose Metabolism Induction. STEM CELLS, 30(10), 2221-2233. doi:10.1002/stem.1189

Rodríguez-Jiménez, F. J., Valdes-Sánchez, T., Carrillo, J. M., Rubio, M., Monleon-Prades, M., García-Cruz, D. M., … Moreno-Manzano, V. (2012). Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches. Journal of Functional Biomaterials, 3(3), 556-568. doi:10.3390/jfb3030556

Scuteri, A., Ravasi, M., Pasini, S., Bossi, M., & Tredici, G. (2011). Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience, 172, 12-19. doi:10.1016/j.neuroscience.2010.10.065

Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948

Thouas GA Contreras KG Bernard CC et al 2008 Biomaterials for spinal cord regeneration: outgrowth of presumptive neuronal precursors on electrospun poly( ε -caprolactone) scaffolds microlayered with alternating polyelectrolytes Conf Proc IEEE Eng Med Biol Soc 1825 1828

Valdés-Sánchez, T., Kirstein, M., Pérez-Villalba, A., Vega, J. A., & Fariñas, I. (2010). BDNF is essentially required for the early postnatal survival of nociceptors. Developmental Biology, 339(2), 465-476. doi:10.1016/j.ydbio.2010.01.001

Wilcox, J. T., Cadotte, D., & Fehlings, M. G. (2012). Spinal cord clinical trials and the role for bioengineering. Neuroscience Letters, 519(2), 93-102. doi:10.1016/j.neulet.2012.02.028

Yang, J., Lou, Q., Huang, R., Shen, L., & Chen, Z. (2008). Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage. Neuroscience Letters, 445(3), 246-251. doi:10.1016/j.neulet.2008.09.015

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record