- -

Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties

Mostrar el registro completo del ítem

Trujillo, S.; Perez Román, E.; Kyritsis, A.; Gómez Ribelles, JL.; Pandis, C. (2015). Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. Journal of Polymer Science Part B Polymer Physics. 53(19):1391-1400. https://doi.org/10.1002/polb.23774

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150368

Ficheros en el ítem

Metadatos del ítem

Título: Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties
Autor: Trujillo, Sara Perez Román, Estela Kyritsis, A. Gómez Ribelles, José Luís Pandis, C.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable ...[+]
Palabras clave: Biomaterials , Chitosan , GPTMS , Silicas , Sol-gel , TEOS , Thermal properties
Derechos de uso: Cerrado
Fuente:
Journal of Polymer Science Part B Polymer Physics. (issn: 0887-6266 )
DOI: 10.1002/polb.23774
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/polb.23774
Código del Proyecto:
info:eu-repo/grantAgreement/GSRT//NARGEL-PE5 (2551)/
info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/
Agradecimientos:
The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for ...[+]
Tipo: Artículo

References

Valliant, E. M., & Jones, J. R. (2011). Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter, 7(11), 5083. doi:10.1039/c0sm01348j

Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457-4486. doi:10.1016/j.actbio.2012.08.023

Jones, J. R., Ehrenfried, L. M., & Hench, L. L. (2006). Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27(7), 964-973. doi:10.1016/j.biomaterials.2005.07.017 [+]
Valliant, E. M., & Jones, J. R. (2011). Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter, 7(11), 5083. doi:10.1039/c0sm01348j

Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457-4486. doi:10.1016/j.actbio.2012.08.023

Jones, J. R., Ehrenfried, L. M., & Hench, L. L. (2006). Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27(7), 964-973. doi:10.1016/j.biomaterials.2005.07.017

Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6

Hutmacher, D. W., Schantz, J. T., Lam, C. X. F., Tan, K. C., & Lim, T. C. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1(4), 245-260. doi:10.1002/term.24

Ganesh, N., Jayakumar, R., Koyakutty, M., Mony, U., & Nair, S. V. (2012). Embedded Silica Nanoparticles in Poly(Caprolactone) Nanofibrous Scaffolds Enhanced Osteogenic Potential for Bone Tissue Engineering. Tissue Engineering Part A, 18(17-18), 1867-1881. doi:10.1089/ten.tea.2012.0167

Ba Linh, N. T., Min, Y. K., & Lee, B.-T. (2012). Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 24(5), 520-538. doi:10.1080/09205063.2012.697696

Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831

Ródenas-Rochina, J., Ribelles, J. L. G., & Lebourg, M. (2013). Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 24(5), 1293-1308. doi:10.1007/s10856-013-4878-5

Mano, J. F., Hungerford, G., & Gómez Ribelles, J. L. (2008). Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering: C, 28(8), 1356-1365. doi:10.1016/j.msec.2008.03.005

SHIROSAKI, Y., TSURU, K., HAYAKAWA, S., OSAKA, A., LOPES, M., SANTOS, J., … FERNANDES, M. (2009). Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration☆. Acta Biomaterialia, 5(1), 346-355. doi:10.1016/j.actbio.2008.07.022

Shirosaki, Y., Tsuru, K., Hayakawa, S., Nakamura, Y., Gibson, I. R., & Osaka, A. (2010). Effects of Si(IV) Released from Chitosan-Silicate Hybrids on Proliferation and Differentiation of MG63 Osteoblast Cells. Bioceramics Development and Applications, 1, 1-4. doi:10.4303/bda/d110112

SHIROSAKI, Y., TSURU, K., MORIBAYASHI, H., HAYAKAWA, S., NAKAMURA, Y., GIBSON, I. R., & OSAKA, A. (2010). Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. Journal of the Ceramic Society of Japan, 118(1383), 989-992. doi:10.2109/jcersj2.118.989

Allo, B. A., Rizkalla, A. S., & Mequanint, K. (2010). Synthesis and Electrospinning of ε-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol−Gel Process. Langmuir, 26(23), 18340-18348. doi:10.1021/la102845k

Dinelli, M., Fabbri, E., & Bondioli, F. (2011). TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. Journal of Sol-Gel Science and Technology, 58(2), 463-469. doi:10.1007/s10971-011-2413-z

Plazas Bonilla, C. E., Gómez-Tejedor, J. A., Perilla, J. E., & Gómez Ribelles, J. L. (2013). Silica phase formed by sol–gel reaction in the nano- and micro-pores of a polymer hydrogel. Journal of Non-Crystalline Solids, 379, 12-20. doi:10.1016/j.jnoncrysol.2013.07.018

Pandis, C., Trujillo, S., Roganowicz, M., & Gómez Ribelles, J. L. (2014). Hybrid Polycaprolactone/Silica Porous Membranes Produced by Sol-Gel. Macromolecular Symposia, 341(1), 34-44. doi:10.1002/masy.201300155

Pandis, C., Madeira, S., Matos, J., Kyritsis, A., Mano, J. F., & Ribelles, J. L. G. (2014). Chitosan–silica hybrid porous membranes. Materials Science and Engineering: C, 42, 553-561. doi:10.1016/j.msec.2014.05.073

Pandis, C., Trujillo, S., Matos, J., Madeira, S., Ródenas-Rochina, J., Kripotou, S., … Gómez Ribelles, J. L. (2014). Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 15(2), 262-274. doi:10.1002/mabi.201400339

Trujillo, S., Plazas Bonilla, C. E., Santos, M. S., Matos, J. M., Gamboa, T., Perilla, J. E., … Gómez Ribelles, J. L. (2014). Polycaprolactone membranes reinforced by toughened sol–gel produced silica networks. Journal of Sol-Gel Science and Technology, 71(1), 136-146. doi:10.1007/s10971-014-3342-4

DORNISH, M., KAPLAN, D., & SKAUGRUD, Ø. (2006). Standards and Guidelines for Biopolymers in Tissue-Engineered Medical Products. Annals of the New York Academy of Sciences, 944(1), 388-397. doi:10.1111/j.1749-6632.2001.tb03850.x

Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35(3), 360-369. doi:10.1134/s106816200903011x

Liu, Y.-L., Su, Y.-H., & Lai, J.-Y. (2004). In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 45(20), 6831-6837. doi:10.1016/j.polymer.2004.08.006

Schiffman, J. D., & Schauer, C. L. (2007). Cross-Linking Chitosan Nanofibers. Biomacromolecules, 8(2), 594-601. doi:10.1021/bm060804s

Wei, Y. C., Hudson, S. M., Mayer, J. M., & Kaplan, D. L. (1992). The crosslinking of chitosan fibers. Journal of Polymer Science Part A: Polymer Chemistry, 30(10), 2187-2193. doi:10.1002/pola.1992.080301013

Connell, L. S., Romer, F., Suárez, M., Valliant, E. M., Zhang, Z., Lee, P. D., … Jones, J. R. (2014). Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J. Mater. Chem. B, 2(6), 668-680. doi:10.1039/c3tb21507e

Gabrielli, L., Connell, L., Russo, L., Jiménez-Barbero, J., Nicotra, F., Cipolla, L., & Jones, J. R. (2014). Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Adv., 4(4), 1841-1848. doi:10.1039/c3ra44748k

Chao, A.-C. (2008). Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus. Journal of Membrane Science, 311(1-2), 306-318. doi:10.1016/j.memsci.2007.12.032

Costa-Pinto, A. R., Reis, R. L., & Neves, N. M. (2011). Scaffolds Based Bone Tissue Engineering: The Role of Chitosan. Tissue Engineering Part B: Reviews, 17(5), 331-347. doi:10.1089/ten.teb.2010.0704

Pighinelli, L., & Kucharska, M. (2013). Chitosan–hydroxyapatite composites. Carbohydrate Polymers, 93(1), 256-262. doi:10.1016/j.carbpol.2012.06.004

Levengood, S. K. L., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2(21), 3161. doi:10.1039/c4tb00027g

Shirosaki, Y., Hirai, M., Hayakawa, S., Fujii, E., Lopes, M. A., Santos, J. D., & Osaka, A. (2014). Preparation andin vitrocytocompatibility of chitosan-siloxane hybrid hydrogels. Journal of Biomedical Materials Research Part A, 103(1), 289-299. doi:10.1002/jbm.a.35171

Sakurai, K. (2000). Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer, 41(19), 7051-7056. doi:10.1016/s0032-3861(00)00067-7

Kittur, F. S., Harish Prashanth, K. V., Udaya Sankar, K., & Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate Polymers, 49(2), 185-193. doi:10.1016/s0144-8617(01)00320-4

Varghese, J. G., Karuppannan, R. S., & Kariduraganavar, M. Y. (2010). Development of Hybrid Membranes Using Chitosan and Silica Precursors for Pervaporation Separation of Water + Isopropanol Mixtures. Journal of Chemical & Engineering Data, 55(6), 2084-2092. doi:10.1021/je9003993

Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485-493. doi:10.1016/j.biomaterials.2004.02.056

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem