Mostrar el registro sencillo del ítem
dc.contributor.author | Trujillo, Sara | es_ES |
dc.contributor.author | Perez Román, Estela | es_ES |
dc.contributor.author | Kyritsis, A. | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Pandis, C. | es_ES |
dc.date.accessioned | 2020-09-18T03:36:42Z | |
dc.date.available | 2020-09-18T03:36:42Z | |
dc.date.issued | 2015-10-01 | es_ES |
dc.identifier.issn | 0887-6266 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150368 | |
dc.description.abstract | [EN] Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol-gel using tetraethylortosilicate and 3-glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic-inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. (c) 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1391-1400 | es_ES |
dc.description.sponsorship | The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, Grant No.: NARGEL-PE5 (2551). J. L. Gomez Ribelles acknowledges the support of the Ministerio de Economia y Competitividad, MINECO, through the MAT2013-46467-C4-1-R project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance from the European Regional Development Fund. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Polymer Science Part B Polymer Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biomaterials | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | GPTMS | es_ES |
dc.subject | Silicas | es_ES |
dc.subject | Sol-gel | es_ES |
dc.subject | TEOS | es_ES |
dc.subject | Thermal properties | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/polb.23774 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GSRT//NARGEL-PE5 (2551)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Trujillo, S.; Perez Román, E.; Kyritsis, A.; Gómez Ribelles, JL.; Pandis, C. (2015). Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. Journal of Polymer Science Part B Polymer Physics. 53(19):1391-1400. https://doi.org/10.1002/polb.23774 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/polb.23774 | es_ES |
dc.description.upvformatpinicio | 1391 | es_ES |
dc.description.upvformatpfin | 1400 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.pasarela | S\299923 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | General Secretariat for Research and Technology, Grecia | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Valliant, E. M., & Jones, J. R. (2011). Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter, 7(11), 5083. doi:10.1039/c0sm01348j | es_ES |
dc.description.references | Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457-4486. doi:10.1016/j.actbio.2012.08.023 | es_ES |
dc.description.references | Jones, J. R., Ehrenfried, L. M., & Hench, L. L. (2006). Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27(7), 964-973. doi:10.1016/j.biomaterials.2005.07.017 | es_ES |
dc.description.references | Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6 | es_ES |
dc.description.references | Hutmacher, D. W., Schantz, J. T., Lam, C. X. F., Tan, K. C., & Lim, T. C. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1(4), 245-260. doi:10.1002/term.24 | es_ES |
dc.description.references | Ganesh, N., Jayakumar, R., Koyakutty, M., Mony, U., & Nair, S. V. (2012). Embedded Silica Nanoparticles in Poly(Caprolactone) Nanofibrous Scaffolds Enhanced Osteogenic Potential for Bone Tissue Engineering. Tissue Engineering Part A, 18(17-18), 1867-1881. doi:10.1089/ten.tea.2012.0167 | es_ES |
dc.description.references | Ba Linh, N. T., Min, Y. K., & Lee, B.-T. (2012). Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 24(5), 520-538. doi:10.1080/09205063.2012.697696 | es_ES |
dc.description.references | Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831 | es_ES |
dc.description.references | Ródenas-Rochina, J., Ribelles, J. L. G., & Lebourg, M. (2013). Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 24(5), 1293-1308. doi:10.1007/s10856-013-4878-5 | es_ES |
dc.description.references | Mano, J. F., Hungerford, G., & Gómez Ribelles, J. L. (2008). Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering: C, 28(8), 1356-1365. doi:10.1016/j.msec.2008.03.005 | es_ES |
dc.description.references | SHIROSAKI, Y., TSURU, K., HAYAKAWA, S., OSAKA, A., LOPES, M., SANTOS, J., … FERNANDES, M. (2009). Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration☆. Acta Biomaterialia, 5(1), 346-355. doi:10.1016/j.actbio.2008.07.022 | es_ES |
dc.description.references | Shirosaki, Y., Tsuru, K., Hayakawa, S., Nakamura, Y., Gibson, I. R., & Osaka, A. (2010). Effects of Si(IV) Released from Chitosan-Silicate Hybrids on Proliferation and Differentiation of MG63 Osteoblast Cells. Bioceramics Development and Applications, 1, 1-4. doi:10.4303/bda/d110112 | es_ES |
dc.description.references | SHIROSAKI, Y., TSURU, K., MORIBAYASHI, H., HAYAKAWA, S., NAKAMURA, Y., GIBSON, I. R., & OSAKA, A. (2010). Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. Journal of the Ceramic Society of Japan, 118(1383), 989-992. doi:10.2109/jcersj2.118.989 | es_ES |
dc.description.references | Allo, B. A., Rizkalla, A. S., & Mequanint, K. (2010). Synthesis and Electrospinning of ε-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol−Gel Process. Langmuir, 26(23), 18340-18348. doi:10.1021/la102845k | es_ES |
dc.description.references | Dinelli, M., Fabbri, E., & Bondioli, F. (2011). TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. Journal of Sol-Gel Science and Technology, 58(2), 463-469. doi:10.1007/s10971-011-2413-z | es_ES |
dc.description.references | Plazas Bonilla, C. E., Gómez-Tejedor, J. A., Perilla, J. E., & Gómez Ribelles, J. L. (2013). Silica phase formed by sol–gel reaction in the nano- and micro-pores of a polymer hydrogel. Journal of Non-Crystalline Solids, 379, 12-20. doi:10.1016/j.jnoncrysol.2013.07.018 | es_ES |
dc.description.references | Pandis, C., Trujillo, S., Roganowicz, M., & Gómez Ribelles, J. L. (2014). Hybrid Polycaprolactone/Silica Porous Membranes Produced by Sol-Gel. Macromolecular Symposia, 341(1), 34-44. doi:10.1002/masy.201300155 | es_ES |
dc.description.references | Pandis, C., Madeira, S., Matos, J., Kyritsis, A., Mano, J. F., & Ribelles, J. L. G. (2014). Chitosan–silica hybrid porous membranes. Materials Science and Engineering: C, 42, 553-561. doi:10.1016/j.msec.2014.05.073 | es_ES |
dc.description.references | Pandis, C., Trujillo, S., Matos, J., Madeira, S., Ródenas-Rochina, J., Kripotou, S., … Gómez Ribelles, J. L. (2014). Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 15(2), 262-274. doi:10.1002/mabi.201400339 | es_ES |
dc.description.references | Trujillo, S., Plazas Bonilla, C. E., Santos, M. S., Matos, J. M., Gamboa, T., Perilla, J. E., … Gómez Ribelles, J. L. (2014). Polycaprolactone membranes reinforced by toughened sol–gel produced silica networks. Journal of Sol-Gel Science and Technology, 71(1), 136-146. doi:10.1007/s10971-014-3342-4 | es_ES |
dc.description.references | DORNISH, M., KAPLAN, D., & SKAUGRUD, Ø. (2006). Standards and Guidelines for Biopolymers in Tissue-Engineered Medical Products. Annals of the New York Academy of Sciences, 944(1), 388-397. doi:10.1111/j.1749-6632.2001.tb03850.x | es_ES |
dc.description.references | Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35(3), 360-369. doi:10.1134/s106816200903011x | es_ES |
dc.description.references | Liu, Y.-L., Su, Y.-H., & Lai, J.-Y. (2004). In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 45(20), 6831-6837. doi:10.1016/j.polymer.2004.08.006 | es_ES |
dc.description.references | Schiffman, J. D., & Schauer, C. L. (2007). Cross-Linking Chitosan Nanofibers. Biomacromolecules, 8(2), 594-601. doi:10.1021/bm060804s | es_ES |
dc.description.references | Wei, Y. C., Hudson, S. M., Mayer, J. M., & Kaplan, D. L. (1992). The crosslinking of chitosan fibers. Journal of Polymer Science Part A: Polymer Chemistry, 30(10), 2187-2193. doi:10.1002/pola.1992.080301013 | es_ES |
dc.description.references | Connell, L. S., Romer, F., Suárez, M., Valliant, E. M., Zhang, Z., Lee, P. D., … Jones, J. R. (2014). Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J. Mater. Chem. B, 2(6), 668-680. doi:10.1039/c3tb21507e | es_ES |
dc.description.references | Gabrielli, L., Connell, L., Russo, L., Jiménez-Barbero, J., Nicotra, F., Cipolla, L., & Jones, J. R. (2014). Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Adv., 4(4), 1841-1848. doi:10.1039/c3ra44748k | es_ES |
dc.description.references | Chao, A.-C. (2008). Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus. Journal of Membrane Science, 311(1-2), 306-318. doi:10.1016/j.memsci.2007.12.032 | es_ES |
dc.description.references | Costa-Pinto, A. R., Reis, R. L., & Neves, N. M. (2011). Scaffolds Based Bone Tissue Engineering: The Role of Chitosan. Tissue Engineering Part B: Reviews, 17(5), 331-347. doi:10.1089/ten.teb.2010.0704 | es_ES |
dc.description.references | Pighinelli, L., & Kucharska, M. (2013). Chitosan–hydroxyapatite composites. Carbohydrate Polymers, 93(1), 256-262. doi:10.1016/j.carbpol.2012.06.004 | es_ES |
dc.description.references | Levengood, S. K. L., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2(21), 3161. doi:10.1039/c4tb00027g | es_ES |
dc.description.references | Shirosaki, Y., Hirai, M., Hayakawa, S., Fujii, E., Lopes, M. A., Santos, J. D., & Osaka, A. (2014). Preparation andin vitrocytocompatibility of chitosan-siloxane hybrid hydrogels. Journal of Biomedical Materials Research Part A, 103(1), 289-299. doi:10.1002/jbm.a.35171 | es_ES |
dc.description.references | Sakurai, K. (2000). Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer, 41(19), 7051-7056. doi:10.1016/s0032-3861(00)00067-7 | es_ES |
dc.description.references | Kittur, F. S., Harish Prashanth, K. V., Udaya Sankar, K., & Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate Polymers, 49(2), 185-193. doi:10.1016/s0144-8617(01)00320-4 | es_ES |
dc.description.references | Varghese, J. G., Karuppannan, R. S., & Kariduraganavar, M. Y. (2010). Development of Hybrid Membranes Using Chitosan and Silica Precursors for Pervaporation Separation of Water + Isopropanol Mixtures. Journal of Chemical & Engineering Data, 55(6), 2084-2092. doi:10.1021/je9003993 | es_ES |
dc.description.references | Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485-493. doi:10.1016/j.biomaterials.2004.02.056 | es_ES |