- -

Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo, Sara es_ES
dc.contributor.author Perez Román, Estela es_ES
dc.contributor.author Kyritsis, A. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Pandis, C. es_ES
dc.date.accessioned 2020-09-18T03:36:42Z
dc.date.available 2020-09-18T03:36:42Z
dc.date.issued 2015-10-01 es_ES
dc.identifier.issn 0887-6266 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150368
dc.description.abstract [EN] Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol-gel using tetraethylortosilicate and 3-glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic-inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. (c) 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1391-1400 es_ES
dc.description.sponsorship The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, Grant No.: NARGEL-PE5 (2551). J. L. Gomez Ribelles acknowledges the support of the Ministerio de Economia y Competitividad, MINECO, through the MAT2013-46467-C4-1-R project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Polymer Science Part B Polymer Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomaterials es_ES
dc.subject Chitosan es_ES
dc.subject GPTMS es_ES
dc.subject Silicas es_ES
dc.subject Sol-gel es_ES
dc.subject TEOS es_ES
dc.subject Thermal properties es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/polb.23774 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GSRT//NARGEL-PE5 (2551)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Trujillo, S.; Perez Román, E.; Kyritsis, A.; Gómez Ribelles, JL.; Pandis, C. (2015). Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. Journal of Polymer Science Part B Polymer Physics. 53(19):1391-1400. https://doi.org/10.1002/polb.23774 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/polb.23774 es_ES
dc.description.upvformatpinicio 1391 es_ES
dc.description.upvformatpfin 1400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\299923 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder General Secretariat for Research and Technology, Grecia es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Valliant, E. M., & Jones, J. R. (2011). Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter, 7(11), 5083. doi:10.1039/c0sm01348j es_ES
dc.description.references Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457-4486. doi:10.1016/j.actbio.2012.08.023 es_ES
dc.description.references Jones, J. R., Ehrenfried, L. M., & Hench, L. L. (2006). Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27(7), 964-973. doi:10.1016/j.biomaterials.2005.07.017 es_ES
dc.description.references Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6 es_ES
dc.description.references Hutmacher, D. W., Schantz, J. T., Lam, C. X. F., Tan, K. C., & Lim, T. C. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1(4), 245-260. doi:10.1002/term.24 es_ES
dc.description.references Ganesh, N., Jayakumar, R., Koyakutty, M., Mony, U., & Nair, S. V. (2012). Embedded Silica Nanoparticles in Poly(Caprolactone) Nanofibrous Scaffolds Enhanced Osteogenic Potential for Bone Tissue Engineering. Tissue Engineering Part A, 18(17-18), 1867-1881. doi:10.1089/ten.tea.2012.0167 es_ES
dc.description.references Ba Linh, N. T., Min, Y. K., & Lee, B.-T. (2012). Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 24(5), 520-538. doi:10.1080/09205063.2012.697696 es_ES
dc.description.references Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831 es_ES
dc.description.references Ródenas-Rochina, J., Ribelles, J. L. G., & Lebourg, M. (2013). Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 24(5), 1293-1308. doi:10.1007/s10856-013-4878-5 es_ES
dc.description.references Mano, J. F., Hungerford, G., & Gómez Ribelles, J. L. (2008). Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering: C, 28(8), 1356-1365. doi:10.1016/j.msec.2008.03.005 es_ES
dc.description.references SHIROSAKI, Y., TSURU, K., HAYAKAWA, S., OSAKA, A., LOPES, M., SANTOS, J., … FERNANDES, M. (2009). Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration☆. Acta Biomaterialia, 5(1), 346-355. doi:10.1016/j.actbio.2008.07.022 es_ES
dc.description.references Shirosaki, Y., Tsuru, K., Hayakawa, S., Nakamura, Y., Gibson, I. R., & Osaka, A. (2010). Effects of Si(IV) Released from Chitosan-Silicate Hybrids on Proliferation and Differentiation of MG63 Osteoblast Cells. Bioceramics Development and Applications, 1, 1-4. doi:10.4303/bda/d110112 es_ES
dc.description.references SHIROSAKI, Y., TSURU, K., MORIBAYASHI, H., HAYAKAWA, S., NAKAMURA, Y., GIBSON, I. R., & OSAKA, A. (2010). Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. Journal of the Ceramic Society of Japan, 118(1383), 989-992. doi:10.2109/jcersj2.118.989 es_ES
dc.description.references Allo, B. A., Rizkalla, A. S., & Mequanint, K. (2010). Synthesis and Electrospinning of ε-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol−Gel Process. Langmuir, 26(23), 18340-18348. doi:10.1021/la102845k es_ES
dc.description.references Dinelli, M., Fabbri, E., & Bondioli, F. (2011). TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. Journal of Sol-Gel Science and Technology, 58(2), 463-469. doi:10.1007/s10971-011-2413-z es_ES
dc.description.references Plazas Bonilla, C. E., Gómez-Tejedor, J. A., Perilla, J. E., & Gómez Ribelles, J. L. (2013). Silica phase formed by sol–gel reaction in the nano- and micro-pores of a polymer hydrogel. Journal of Non-Crystalline Solids, 379, 12-20. doi:10.1016/j.jnoncrysol.2013.07.018 es_ES
dc.description.references Pandis, C., Trujillo, S., Roganowicz, M., & Gómez Ribelles, J. L. (2014). Hybrid Polycaprolactone/Silica Porous Membranes Produced by Sol-Gel. Macromolecular Symposia, 341(1), 34-44. doi:10.1002/masy.201300155 es_ES
dc.description.references Pandis, C., Madeira, S., Matos, J., Kyritsis, A., Mano, J. F., & Ribelles, J. L. G. (2014). Chitosan–silica hybrid porous membranes. Materials Science and Engineering: C, 42, 553-561. doi:10.1016/j.msec.2014.05.073 es_ES
dc.description.references Pandis, C., Trujillo, S., Matos, J., Madeira, S., Ródenas-Rochina, J., Kripotou, S., … Gómez Ribelles, J. L. (2014). Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 15(2), 262-274. doi:10.1002/mabi.201400339 es_ES
dc.description.references Trujillo, S., Plazas Bonilla, C. E., Santos, M. S., Matos, J. M., Gamboa, T., Perilla, J. E., … Gómez Ribelles, J. L. (2014). Polycaprolactone membranes reinforced by toughened sol–gel produced silica networks. Journal of Sol-Gel Science and Technology, 71(1), 136-146. doi:10.1007/s10971-014-3342-4 es_ES
dc.description.references DORNISH, M., KAPLAN, D., & SKAUGRUD, Ø. (2006). Standards and Guidelines for Biopolymers in Tissue-Engineered Medical Products. Annals of the New York Academy of Sciences, 944(1), 388-397. doi:10.1111/j.1749-6632.2001.tb03850.x es_ES
dc.description.references Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35(3), 360-369. doi:10.1134/s106816200903011x es_ES
dc.description.references Liu, Y.-L., Su, Y.-H., & Lai, J.-Y. (2004). In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 45(20), 6831-6837. doi:10.1016/j.polymer.2004.08.006 es_ES
dc.description.references Schiffman, J. D., & Schauer, C. L. (2007). Cross-Linking Chitosan Nanofibers. Biomacromolecules, 8(2), 594-601. doi:10.1021/bm060804s es_ES
dc.description.references Wei, Y. C., Hudson, S. M., Mayer, J. M., & Kaplan, D. L. (1992). The crosslinking of chitosan fibers. Journal of Polymer Science Part A: Polymer Chemistry, 30(10), 2187-2193. doi:10.1002/pola.1992.080301013 es_ES
dc.description.references Connell, L. S., Romer, F., Suárez, M., Valliant, E. M., Zhang, Z., Lee, P. D., … Jones, J. R. (2014). Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J. Mater. Chem. B, 2(6), 668-680. doi:10.1039/c3tb21507e es_ES
dc.description.references Gabrielli, L., Connell, L., Russo, L., Jiménez-Barbero, J., Nicotra, F., Cipolla, L., & Jones, J. R. (2014). Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Adv., 4(4), 1841-1848. doi:10.1039/c3ra44748k es_ES
dc.description.references Chao, A.-C. (2008). Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus. Journal of Membrane Science, 311(1-2), 306-318. doi:10.1016/j.memsci.2007.12.032 es_ES
dc.description.references Costa-Pinto, A. R., Reis, R. L., & Neves, N. M. (2011). Scaffolds Based Bone Tissue Engineering: The Role of Chitosan. Tissue Engineering Part B: Reviews, 17(5), 331-347. doi:10.1089/ten.teb.2010.0704 es_ES
dc.description.references Pighinelli, L., & Kucharska, M. (2013). Chitosan–hydroxyapatite composites. Carbohydrate Polymers, 93(1), 256-262. doi:10.1016/j.carbpol.2012.06.004 es_ES
dc.description.references Levengood, S. K. L., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2(21), 3161. doi:10.1039/c4tb00027g es_ES
dc.description.references Shirosaki, Y., Hirai, M., Hayakawa, S., Fujii, E., Lopes, M. A., Santos, J. D., & Osaka, A. (2014). Preparation andin vitrocytocompatibility of chitosan-siloxane hybrid hydrogels. Journal of Biomedical Materials Research Part A, 103(1), 289-299. doi:10.1002/jbm.a.35171 es_ES
dc.description.references Sakurai, K. (2000). Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer, 41(19), 7051-7056. doi:10.1016/s0032-3861(00)00067-7 es_ES
dc.description.references Kittur, F. S., Harish Prashanth, K. V., Udaya Sankar, K., & Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate Polymers, 49(2), 185-193. doi:10.1016/s0144-8617(01)00320-4 es_ES
dc.description.references Varghese, J. G., Karuppannan, R. S., & Kariduraganavar, M. Y. (2010). Development of Hybrid Membranes Using Chitosan and Silica Precursors for Pervaporation Separation of Water + Isopropanol Mixtures. Journal of Chemical & Engineering Data, 55(6), 2084-2092. doi:10.1021/je9003993 es_ES
dc.description.references Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485-493. doi:10.1016/j.biomaterials.2004.02.056 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem