- -

Metabolic response of tomato leaves upon different plant-pathogen interactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Metabolic response of tomato leaves upon different plant-pathogen interactions

Show full item record

López-Gresa, MP.; Maltese, F.; Belles Albert, JM.; Conejero, V.; Kim, HK.; Choi, YH.; Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis. 21(1):89-94. https://doi.org/10.1002/pca.1179

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150463

Files in this item

Item Metadata

Title: Metabolic response of tomato leaves upon different plant-pathogen interactions
Author: López-Gresa, María Pilar Maltese, F. Belles Albert, José Mª Conejero, V Kim, Hye Kyong Choi, Young Hae Verpoorte, Robert
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] Introduction - Plants utilise vaious defence mechanisms against their potential biotic stressing agents such as viroids, viruses, bacteria or fungi and abiotic environmental challenges. Among them metabolic alteration ...[+]
Subjects: Solanum lycopersicum , Pseudomonos syringae , Citrus exocortis viroid (CEVd) , Plant-pathogen interaction , NMR-based metabolomics
Copyrigths: Reserva de todos los derechos
Source:
Phytochemical Analysis. (issn: 0958-0344 )
DOI: 10.1002/pca.1179
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/pca.1179
Thanks:
We gratefully acknowledge Cristina Torres for the technical support. This work has been supported by grant BFU2006-11546 and fellowship JC2008-00432 (to M.P.L.G) from Spanish Ministry Science and Innovation.
Type: Artículo

References

Abdel-Farid, I. B., Jahangir, M., van den Hondel, C. A. M. J. J., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Fungal infection-induced metabolites in Brassica rapa. Plant Science, 176(5), 608-615. doi:10.1016/j.plantsci.2009.01.017

Arie, T., Takahashi, H., Kodama, M., & Teraoka, T. (2007). Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 24(1), 135-147. doi:10.5511/plantbiotechnology.24.135

Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053 [+]
Abdel-Farid, I. B., Jahangir, M., van den Hondel, C. A. M. J. J., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Fungal infection-induced metabolites in Brassica rapa. Plant Science, 176(5), 608-615. doi:10.1016/j.plantsci.2009.01.017

Arie, T., Takahashi, H., Kodama, M., & Teraoka, T. (2007). Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 24(1), 135-147. doi:10.5511/plantbiotechnology.24.135

Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053

Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227

Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8

Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008

Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E., & Klee, H. J. (2000). Response to Xanthomonas campestris pv.vesicatoria in Tomato Involves Regulation of Ethylene Receptor Gene Expression. Plant Physiology, 123(1), 81-92. doi:10.1104/pp.123.1.81

Collinge, D. B., Milligan, D. E., Dow, J. M., Scofield, G., & Daniels, M. J. (1987). Gene expression in Brassica campestris showing a hypersensitive response to the incompatible pathogen Xanthomonas campestris pv. vitians. Plant Molecular Biology, 8(5), 405-414. doi:10.1007/bf00015818

Conejero, V., Bellés, J. M., García-Breijo, F., Garro, R., Hernández-Yago, J., Rodrigo, I., & Vera, P. (1990). Signalling in Viroid Pathogenesis. Recognition and Response in Plant-Virus Interactions, 233-261. doi:10.1007/978-3-642-74164-7_12

Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014

Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7

Hankemeier , T. 2007 Medical system biology Abstracts Book. The 11th International Congress, Phytopharm

Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 107(1), 362-368. doi:10.1016/j.foodchem.2007.08.034

Lund, S. T., Stall, R. E., & Klee, H. J. (1998). Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. The Plant Cell, 10(3), 371-382. doi:10.1105/tpc.10.3.371

Martin, G., Brommonschenkel, S., Chunwongse, J., Frary, A., Ganal, M., Spivey, R., … Tanksley, S. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262(5138), 1432-1436. doi:10.1126/science.7902614

Mehta, A., Brasileiro, A. C. M., Souza, D. S. L., Romano, E., Campos, M. A., Grossi-de-Sá, M. F., … Rocha, T. L. (2008). Plant-pathogen interactions: what is proteomics telling us? FEBS Journal, 275(15), 3731-3746. doi:10.1111/j.1742-4658.2008.06528.x

Naranjo, M. A., Romero, C., Bell�s, J. M., Montesinos, C., Vicente, O., & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 217(3), 417-424. doi:10.1007/s00425-003-1017-4

O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal, 25(3), 315-323. doi:10.1046/j.1365-313x.2001.00968.x

Semancik, J. S., Morris, T. J., Weathers, L. G., Rodorf, B. F., & Kearns, D. R. (1975). Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease. Virology, 63(1), 160-167. doi:10.1016/0042-6822(75)90381-5

Slocombe, S. P., Schauvinhold, I., McQuinn, R. P., Besser, K., Welsby, N. A., Harper, A., … Broun, P. (2008). Transcriptomic and Reverse Genetic Analysesof Branched-Chain Fatty Acid and Acyl Sugar Production in Solanum pennellii and Nicotiana benthamiana. Plant Physiology, 148(4), 1830-1846. doi:10.1104/pp.108.129510

Tan, J., Bednarek, P., Liu, J., Schneider, B., Svatoš, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65(6), 691-699. doi:10.1016/j.phytochem.2003.12.009

Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157. doi:10.1007/s10311-006-0068-8

Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6(1), 3-14. doi:10.1007/s11101-006-9031-3

Zacarés, L., López-Gresa, M. P., Fayos, J., Primo, J., Bellés, J. M., & Conejero, V. (2007). Induction of p-Coumaroyldopamine and Feruloyldopamine, Two Novel Metabolites, in Tomato by the Bacterial Pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions®, 20(11), 1439-1448. doi:10.1094/mpmi-20-11-1439

[-]

This item appears in the following Collection(s)

Show full item record