Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro sencillo del ítem
dc.contributor.author | López-Gresa, María Pilar![]() |
es_ES |
dc.contributor.author | Maltese, F.![]() |
es_ES |
dc.contributor.author | Belles Albert, José Mª![]() |
es_ES |
dc.contributor.author | Conejero, V![]() |
es_ES |
dc.contributor.author | Kim, Hye Kyong![]() |
es_ES |
dc.contributor.author | Choi, Young Hae![]() |
es_ES |
dc.contributor.author | Verpoorte, Robert![]() |
es_ES |
dc.date.accessioned | 2020-09-19T03:35:09Z | |
dc.date.available | 2020-09-19T03:35:09Z | |
dc.date.issued | 2010-01 | es_ES |
dc.identifier.issn | 0958-0344 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150463 | |
dc.description.abstract | [EN] Introduction - Plants utilise vaious defence mechanisms against their potential biotic stressing agents such as viroids, viruses, bacteria or fungi and abiotic environmental challenges. Among them metabolic alteration is a common response in both compatible and incompatible plant-pathogen interactions. However, the identification of metabolic changes associated with defence response is not an easy task due to the complexity of the metabolome and the plant response. To address the problem of metabolic complexity, a metabolomics approach was employed in this study. Objective - To identify a wide range of pathogen (citrus exocortis viroid, CEVd, or Pseudomonas syringae pv. tomato)-induced metabolites of tomato using metabolomics. Methodology - Nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate data analysis were performed to analyse the metabolic changes implicated in plant-pathogen interaction. Results - NMR-based metabolomics of crude extracts allowed the identification of different metabolites implicated in the systemic (viroid) and hypersensitive response (bacteria) in plant-pathogen interactions. While glycosylated gentisic acid was the most important induced metabolite in the viroid infection, phenylpropanoids and a flavonoid (rutin) were found to be associated with bacterial infection. Conclusions - NMR metabolomics is a potent platform to analyse the compounds involved in different plant infections. A broad response to different pathogenic infections was revealed at metabolomic levels in the plant. Also, metabolic specificity against each pathogen was observed. | es_ES |
dc.description.sponsorship | We gratefully acknowledge Cristina Torres for the technical support. This work has been supported by grant BFU2006-11546 and fellowship JC2008-00432 (to M.P.L.G) from Spanish Ministry Science and Innovation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Phytochemical Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Pseudomonos syringae | es_ES |
dc.subject | Citrus exocortis viroid (CEVd) | es_ES |
dc.subject | Plant-pathogen interaction | es_ES |
dc.subject | NMR-based metabolomics | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Metabolic response of tomato leaves upon different plant-pathogen interactions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pca.1179 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JC2008-00432/ES/JC2008-00432/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//BFU2006-11546/ES/ESTUDIOS SOBRE LA RESPUESTA DEFENSIVA DE LAS PLANTAS FRENTE A PATOGENOS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | López-Gresa, MP.; Maltese, F.; Belles Albert, JM.; Conejero, V.; Kim, HK.; Choi, YH.; Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis. 21(1):89-94. https://doi.org/10.1002/pca.1179 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/pca.1179 | es_ES |
dc.description.upvformatpinicio | 89 | es_ES |
dc.description.upvformatpfin | 94 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 19866456 | es_ES |
dc.relation.pasarela | S\36619 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Abdel-Farid, I. B., Jahangir, M., van den Hondel, C. A. M. J. J., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Fungal infection-induced metabolites in Brassica rapa. Plant Science, 176(5), 608-615. doi:10.1016/j.plantsci.2009.01.017 | es_ES |
dc.description.references | Arie, T., Takahashi, H., Kodama, M., & Teraoka, T. (2007). Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 24(1), 135-147. doi:10.5511/plantbiotechnology.24.135 | es_ES |
dc.description.references | Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053 | es_ES |
dc.description.references | Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227 | es_ES |
dc.description.references | Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8 | es_ES |
dc.description.references | Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008 | es_ES |
dc.description.references | Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E., & Klee, H. J. (2000). Response to Xanthomonas campestris pv.vesicatoria in Tomato Involves Regulation of Ethylene Receptor Gene Expression. Plant Physiology, 123(1), 81-92. doi:10.1104/pp.123.1.81 | es_ES |
dc.description.references | Collinge, D. B., Milligan, D. E., Dow, J. M., Scofield, G., & Daniels, M. J. (1987). Gene expression in Brassica campestris showing a hypersensitive response to the incompatible pathogen Xanthomonas campestris pv. vitians. Plant Molecular Biology, 8(5), 405-414. doi:10.1007/bf00015818 | es_ES |
dc.description.references | Conejero, V., Bellés, J. M., García-Breijo, F., Garro, R., Hernández-Yago, J., Rodrigo, I., & Vera, P. (1990). Signalling in Viroid Pathogenesis. Recognition and Response in Plant-Virus Interactions, 233-261. doi:10.1007/978-3-642-74164-7_12 | es_ES |
dc.description.references | Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014 | es_ES |
dc.description.references | Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7 | es_ES |
dc.description.references | Hankemeier , T. 2007 Medical system biology Abstracts Book. The 11th International Congress, Phytopharm | es_ES |
dc.description.references | Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 107(1), 362-368. doi:10.1016/j.foodchem.2007.08.034 | es_ES |
dc.description.references | Lund, S. T., Stall, R. E., & Klee, H. J. (1998). Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. The Plant Cell, 10(3), 371-382. doi:10.1105/tpc.10.3.371 | es_ES |
dc.description.references | Martin, G., Brommonschenkel, S., Chunwongse, J., Frary, A., Ganal, M., Spivey, R., … Tanksley, S. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262(5138), 1432-1436. doi:10.1126/science.7902614 | es_ES |
dc.description.references | Mehta, A., Brasileiro, A. C. M., Souza, D. S. L., Romano, E., Campos, M. A., Grossi-de-Sá, M. F., … Rocha, T. L. (2008). Plant-pathogen interactions: what is proteomics telling us? FEBS Journal, 275(15), 3731-3746. doi:10.1111/j.1742-4658.2008.06528.x | es_ES |
dc.description.references | Naranjo, M. A., Romero, C., Bell�s, J. M., Montesinos, C., Vicente, O., & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 217(3), 417-424. doi:10.1007/s00425-003-1017-4 | es_ES |
dc.description.references | O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal, 25(3), 315-323. doi:10.1046/j.1365-313x.2001.00968.x | es_ES |
dc.description.references | Semancik, J. S., Morris, T. J., Weathers, L. G., Rodorf, B. F., & Kearns, D. R. (1975). Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease. Virology, 63(1), 160-167. doi:10.1016/0042-6822(75)90381-5 | es_ES |
dc.description.references | Slocombe, S. P., Schauvinhold, I., McQuinn, R. P., Besser, K., Welsby, N. A., Harper, A., … Broun, P. (2008). Transcriptomic and Reverse Genetic Analysesof Branched-Chain Fatty Acid and Acyl Sugar Production in Solanum pennellii and Nicotiana benthamiana. Plant Physiology, 148(4), 1830-1846. doi:10.1104/pp.108.129510 | es_ES |
dc.description.references | Tan, J., Bednarek, P., Liu, J., Schneider, B., Svatoš, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65(6), 691-699. doi:10.1016/j.phytochem.2003.12.009 | es_ES |
dc.description.references | Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157. doi:10.1007/s10311-006-0068-8 | es_ES |
dc.description.references | Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6(1), 3-14. doi:10.1007/s11101-006-9031-3 | es_ES |
dc.description.references | Zacarés, L., López-Gresa, M. P., Fayos, J., Primo, J., Bellés, J. M., & Conejero, V. (2007). Induction of p-Coumaroyldopamine and Feruloyldopamine, Two Novel Metabolites, in Tomato by the Bacterial Pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions®, 20(11), 1439-1448. doi:10.1094/mpmi-20-11-1439 | es_ES |