- -

Metabolic response of tomato leaves upon different plant-pathogen interactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metabolic response of tomato leaves upon different plant-pathogen interactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Maltese, F. es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author Conejero, V es_ES
dc.contributor.author Kim, Hye Kyong es_ES
dc.contributor.author Choi, Young Hae es_ES
dc.contributor.author Verpoorte, Robert es_ES
dc.date.accessioned 2020-09-19T03:35:09Z
dc.date.available 2020-09-19T03:35:09Z
dc.date.issued 2010-01 es_ES
dc.identifier.issn 0958-0344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150463
dc.description.abstract [EN] Introduction - Plants utilise vaious defence mechanisms against their potential biotic stressing agents such as viroids, viruses, bacteria or fungi and abiotic environmental challenges. Among them metabolic alteration is a common response in both compatible and incompatible plant-pathogen interactions. However, the identification of metabolic changes associated with defence response is not an easy task due to the complexity of the metabolome and the plant response. To address the problem of metabolic complexity, a metabolomics approach was employed in this study. Objective - To identify a wide range of pathogen (citrus exocortis viroid, CEVd, or Pseudomonas syringae pv. tomato)-induced metabolites of tomato using metabolomics. Methodology - Nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate data analysis were performed to analyse the metabolic changes implicated in plant-pathogen interaction. Results - NMR-based metabolomics of crude extracts allowed the identification of different metabolites implicated in the systemic (viroid) and hypersensitive response (bacteria) in plant-pathogen interactions. While glycosylated gentisic acid was the most important induced metabolite in the viroid infection, phenylpropanoids and a flavonoid (rutin) were found to be associated with bacterial infection. Conclusions - NMR metabolomics is a potent platform to analyse the compounds involved in different plant infections. A broad response to different pathogenic infections was revealed at metabolomic levels in the plant. Also, metabolic specificity against each pathogen was observed. es_ES
dc.description.sponsorship We gratefully acknowledge Cristina Torres for the technical support. This work has been supported by grant BFU2006-11546 and fellowship JC2008-00432 (to M.P.L.G) from Spanish Ministry Science and Innovation. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Phytochemical Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Pseudomonos syringae es_ES
dc.subject Citrus exocortis viroid (CEVd) es_ES
dc.subject Plant-pathogen interaction es_ES
dc.subject NMR-based metabolomics es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Metabolic response of tomato leaves upon different plant-pathogen interactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pca.1179 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JC2008-00432/ES/JC2008-00432/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BFU2006-11546/ES/ESTUDIOS SOBRE LA RESPUESTA DEFENSIVA DE LAS PLANTAS FRENTE A PATOGENOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation López-Gresa, MP.; Maltese, F.; Belles Albert, JM.; Conejero, V.; Kim, HK.; Choi, YH.; Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis. 21(1):89-94. https://doi.org/10.1002/pca.1179 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pca.1179 es_ES
dc.description.upvformatpinicio 89 es_ES
dc.description.upvformatpfin 94 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 19866456 es_ES
dc.relation.pasarela S\36619 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Abdel-Farid, I. B., Jahangir, M., van den Hondel, C. A. M. J. J., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Fungal infection-induced metabolites in Brassica rapa. Plant Science, 176(5), 608-615. doi:10.1016/j.plantsci.2009.01.017 es_ES
dc.description.references Arie, T., Takahashi, H., Kodama, M., & Teraoka, T. (2007). Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 24(1), 135-147. doi:10.5511/plantbiotechnology.24.135 es_ES
dc.description.references Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053 es_ES
dc.description.references Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227 es_ES
dc.description.references Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8 es_ES
dc.description.references Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008 es_ES
dc.description.references Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E., & Klee, H. J. (2000). Response to Xanthomonas campestris pv.vesicatoria in Tomato Involves Regulation of Ethylene Receptor Gene Expression. Plant Physiology, 123(1), 81-92. doi:10.1104/pp.123.1.81 es_ES
dc.description.references Collinge, D. B., Milligan, D. E., Dow, J. M., Scofield, G., & Daniels, M. J. (1987). Gene expression in Brassica campestris showing a hypersensitive response to the incompatible pathogen Xanthomonas campestris pv. vitians. Plant Molecular Biology, 8(5), 405-414. doi:10.1007/bf00015818 es_ES
dc.description.references Conejero, V., Bellés, J. M., García-Breijo, F., Garro, R., Hernández-Yago, J., Rodrigo, I., & Vera, P. (1990). Signalling in Viroid Pathogenesis. Recognition and Response in Plant-Virus Interactions, 233-261. doi:10.1007/978-3-642-74164-7_12 es_ES
dc.description.references Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014 es_ES
dc.description.references Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7 es_ES
dc.description.references Hankemeier , T. 2007 Medical system biology Abstracts Book. The 11th International Congress, Phytopharm es_ES
dc.description.references Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 107(1), 362-368. doi:10.1016/j.foodchem.2007.08.034 es_ES
dc.description.references Lund, S. T., Stall, R. E., & Klee, H. J. (1998). Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. The Plant Cell, 10(3), 371-382. doi:10.1105/tpc.10.3.371 es_ES
dc.description.references Martin, G., Brommonschenkel, S., Chunwongse, J., Frary, A., Ganal, M., Spivey, R., … Tanksley, S. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262(5138), 1432-1436. doi:10.1126/science.7902614 es_ES
dc.description.references Mehta, A., Brasileiro, A. C. M., Souza, D. S. L., Romano, E., Campos, M. A., Grossi-de-Sá, M. F., … Rocha, T. L. (2008). Plant-pathogen interactions: what is proteomics telling us? FEBS Journal, 275(15), 3731-3746. doi:10.1111/j.1742-4658.2008.06528.x es_ES
dc.description.references Naranjo, M. A., Romero, C., Bell�s, J. M., Montesinos, C., Vicente, O., & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 217(3), 417-424. doi:10.1007/s00425-003-1017-4 es_ES
dc.description.references O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal, 25(3), 315-323. doi:10.1046/j.1365-313x.2001.00968.x es_ES
dc.description.references Semancik, J. S., Morris, T. J., Weathers, L. G., Rodorf, B. F., & Kearns, D. R. (1975). Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease. Virology, 63(1), 160-167. doi:10.1016/0042-6822(75)90381-5 es_ES
dc.description.references Slocombe, S. P., Schauvinhold, I., McQuinn, R. P., Besser, K., Welsby, N. A., Harper, A., … Broun, P. (2008). Transcriptomic and Reverse Genetic Analysesof Branched-Chain Fatty Acid and Acyl Sugar Production in Solanum pennellii and Nicotiana benthamiana. Plant Physiology, 148(4), 1830-1846. doi:10.1104/pp.108.129510 es_ES
dc.description.references Tan, J., Bednarek, P., Liu, J., Schneider, B., Svatoš, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65(6), 691-699. doi:10.1016/j.phytochem.2003.12.009 es_ES
dc.description.references Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157. doi:10.1007/s10311-006-0068-8 es_ES
dc.description.references Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6(1), 3-14. doi:10.1007/s11101-006-9031-3 es_ES
dc.description.references Zacarés, L., López-Gresa, M. P., Fayos, J., Primo, J., Bellés, J. M., & Conejero, V. (2007). Induction of p-Coumaroyldopamine and Feruloyldopamine, Two Novel Metabolites, in Tomato by the Bacterial Pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions®, 20(11), 1439-1448. doi:10.1094/mpmi-20-11-1439 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem