- -

A methodology to study oil-coking problem in small turbochargers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A methodology to study oil-coking problem in small turbochargers

Mostrar el registro completo del ítem

Serrano, J.; Tiseira, A.; García-Cuevas González, LM.; Rodriguez-Usaquen, YT.; Guillaume, M. (2020). A methodology to study oil-coking problem in small turbochargers. International Journal of Engine Research. 21(7):1193-1204. https://doi.org/10.1177/1468087418803197

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150655

Ficheros en el ítem

Metadatos del ítem

Título: A methodology to study oil-coking problem in small turbochargers
Autor: Serrano, J.R. Tiseira, Andrés-Omar García-Cuevas González, Luis Miguel Rodriguez-Usaquen, Yuly Tatiana Guillaume, Mijotte
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] In compliance with oncoming emission directives, turbocharging and increasing complexity in the turbocharger system demands a great effort from researchers on the development of effective procedures and tools to cope ...[+]
Palabras clave: Turbocharger , Thermal characterization , Engine hot stop , Oil coke , Oil damage , Bearing housing
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087418803197
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087418803197
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//FPI-2016-S2-1354/
info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/
Agradecimientos:
The authors would like to acknowledge the Apoyo para la investigación y Desarrollo (PAID) grant for doctoral studies (FPI-2016-S2-1354). This work was partially supported by FEDER and the Spanish Ministry of Economy ...[+]
Tipo: Artículo

References

Giakoumis, E. G. (2016). Review of Some Methods for Improving Transient Response in Automotive Diesel Engines through Various Turbocharging Configurations. Frontiers in Mechanical Engineering, 2. doi:10.3389/fmech.2016.00004

Nguyen-Schäfer, H. (2012). Rotordynamics of Automotive Turbochargers. doi:10.1007/978-3-642-27518-0

Brouwer, M. D., Sadeghi, F., Lancaster, C., Archer, J., & Donaldson, J. (2013). Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers. Journal of Tribology, 135(4). doi:10.1115/1.4024780 [+]
Giakoumis, E. G. (2016). Review of Some Methods for Improving Transient Response in Automotive Diesel Engines through Various Turbocharging Configurations. Frontiers in Mechanical Engineering, 2. doi:10.3389/fmech.2016.00004

Nguyen-Schäfer, H. (2012). Rotordynamics of Automotive Turbochargers. doi:10.1007/978-3-642-27518-0

Brouwer, M. D., Sadeghi, F., Lancaster, C., Archer, J., & Donaldson, J. (2013). Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers. Journal of Tribology, 135(4). doi:10.1115/1.4024780

Addison J, Needelman W. Diesel engine lubricant contamination and wear. New York: Pall Corporation, 1986, p.12.

Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042

Galindo, J., Lujan, J. M., Guardiola, C., & Lapuente, G. S. (2006). A method for data consistency checking in compressor and variable-geometry turbine maps. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(10), 1465-1473. doi:10.1243/09544070jauto82

Serrano, J. R., Arnau, F. J., Dolz, V., & Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 1: Data acquisition and post-processing. Applied Thermal Engineering, 29(1), 142-149. doi:10.1016/j.applthermaleng.2008.02.011

Ghazikhani, M., Davarpanah, M., & Shaegh, S. A. M. (2008). An experimental study on the effects of different opening ranges of waste-gate on the exhaust soot emission of a turbo-charged DI diesel engine. Energy Conversion and Management, 49(10), 2563-2569. doi:10.1016/j.enconman.2008.05.012

Jun, H.-B., Kiritsis, D., Gambera, M., & Xirouchakis, P. (2006). Predictive algorithm to determine the suitable time to change automotive engine oil. Computers & Industrial Engineering, 51(4), 671-683. doi:10.1016/j.cie.2006.06.017

Owrang, F., Mattsson, H., Olsson, J., & Pedersen, J. (2004). Investigation of oxidation of a mineral and a synthetic engine oil. Thermochimica Acta, 413(1-2), 241-248. doi:10.1016/j.tca.2003.09.016

Serrano, J. R., Olmeda, P., Arnau, F. J., Reyes-Belmonte, M. A., & Tartoussi, H. (2015). A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. Applied Thermal Engineering, 89, 587-599. doi:10.1016/j.applthermaleng.2015.06.053

Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem