- -

A methodology to study oil-coking problem in small turbochargers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A methodology to study oil-coking problem in small turbochargers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Tiseira, Andrés-Omar es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Rodriguez-Usaquen, Yuly Tatiana es_ES
dc.contributor.author Guillaume, Mijotte es_ES
dc.date.accessioned 2020-09-24T12:29:38Z
dc.date.available 2020-09-24T12:29:38Z
dc.date.issued 2020-09-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150655
dc.description.abstract [EN] In compliance with oncoming emission directives, turbocharging and increasing complexity in the turbocharger system demands a great effort from researchers on the development of effective procedures and tools to cope with the new technological exigencies. This article describes a methodology for studying oil-coking influence in turbocharger performance. A preliminary evaluation and calibration is done. The aim of this work focuses on the development of methodologies and tools that help to evaluate and understand the consequences that degraded oils can generate in the bearing system during enhanced oil-coking procedure. Several experimental tests have been carried out in an engine test bench and using an independent lubrication system that only feeds the turbocharger. The test campaign is done under a specific engine cycle and using oil artificially contaminated at two different levels. The work is divided into two parts. The first part provides a description and definition of test conditions for measuring of the maximum temperature in the bearing system and the second part tackles the measurement and post-processing of the main instantaneous parameters defining the engine and turbocharger behavior. es_ES
dc.description.sponsorship The authors would like to acknowledge the Apoyo para la investigación y Desarrollo (PAID) grant for doctoral studies (FPI-2016-S2-1354). This work was partially supported by FEDER and the Spanish Ministry of Economy and Competitiveness through Grant Number TRA2016-79185-R. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbocharger es_ES
dc.subject Thermal characterization es_ES
dc.subject Engine hot stop es_ES
dc.subject Oil coke es_ES
dc.subject Oil damage es_ES
dc.subject Bearing housing es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title A methodology to study oil-coking problem in small turbochargers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418803197 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2016-S2-1354/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Tiseira, A.; García-Cuevas González, LM.; Rodriguez-Usaquen, YT.; Guillaume, M. (2020). A methodology to study oil-coking problem in small turbochargers. International Journal of Engine Research. 21(7):1193-1204. https://doi.org/10.1177/1468087418803197 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418803197 es_ES
dc.description.upvformatpinicio 1193 es_ES
dc.description.upvformatpfin 1204 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\368031 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Giakoumis, E. G. (2016). Review of Some Methods for Improving Transient Response in Automotive Diesel Engines through Various Turbocharging Configurations. Frontiers in Mechanical Engineering, 2. doi:10.3389/fmech.2016.00004 es_ES
dc.description.references Nguyen-Schäfer, H. (2012). Rotordynamics of Automotive Turbochargers. doi:10.1007/978-3-642-27518-0 es_ES
dc.description.references Brouwer, M. D., Sadeghi, F., Lancaster, C., Archer, J., & Donaldson, J. (2013). Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers. Journal of Tribology, 135(4). doi:10.1115/1.4024780 es_ES
dc.description.references Addison J, Needelman W. Diesel engine lubricant contamination and wear. New York: Pall Corporation, 1986, p.12. es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 es_ES
dc.description.references Galindo, J., Lujan, J. M., Guardiola, C., & Lapuente, G. S. (2006). A method for data consistency checking in compressor and variable-geometry turbine maps. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(10), 1465-1473. doi:10.1243/09544070jauto82 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., Dolz, V., & Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 1: Data acquisition and post-processing. Applied Thermal Engineering, 29(1), 142-149. doi:10.1016/j.applthermaleng.2008.02.011 es_ES
dc.description.references Ghazikhani, M., Davarpanah, M., & Shaegh, S. A. M. (2008). An experimental study on the effects of different opening ranges of waste-gate on the exhaust soot emission of a turbo-charged DI diesel engine. Energy Conversion and Management, 49(10), 2563-2569. doi:10.1016/j.enconman.2008.05.012 es_ES
dc.description.references Jun, H.-B., Kiritsis, D., Gambera, M., & Xirouchakis, P. (2006). Predictive algorithm to determine the suitable time to change automotive engine oil. Computers & Industrial Engineering, 51(4), 671-683. doi:10.1016/j.cie.2006.06.017 es_ES
dc.description.references Owrang, F., Mattsson, H., Olsson, J., & Pedersen, J. (2004). Investigation of oxidation of a mineral and a synthetic engine oil. Thermochimica Acta, 413(1-2), 241-248. doi:10.1016/j.tca.2003.09.016 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Reyes-Belmonte, M. A., & Tartoussi, H. (2015). A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. Applied Thermal Engineering, 89, 587-599. doi:10.1016/j.applthermaleng.2015.06.053 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem