- -

A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction

Show full item record

Jensen, Z.; Kim, E.; Kwon, S.; Gani, TZ.; Román-Leshkov, Y.; Moliner Marin, M.; Corma Canós, A.... (2019). A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction. ACS Central Science. 5(5):892-899. https://doi.org/10.1021/acscentsci.9b00193

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150669

Files in this item

Item Metadata

Title: A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
Author: Jensen, Zach Kim, Edward Kwon, Soonhyoung Gani, Terry Z.H. Román-Leshkov, Yuriy Moliner Marin, Manuel Corma Canós, Avelino Olivetti, Elsa
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Zeolites are porous, aluminosilicate materials with many industrial and "green" applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and ...[+]
Subjects: Large-Pore zeolite , Molecular-Sieves , Framework-Density , Crystallization , Discovery , Location , Design , Ion
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
ACS Central Science. (eissn: 2374-7951 )
DOI: 10.1021/acscentsci.9b00193
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/acscentsci.9b00193
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/
info:eu-repo/grantAgreement/NSF//1534340/US/DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials/
info:eu-repo/grantAgreement/ONR//N00014-16-1-2432/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FPR%2FMIT17%2F11820002/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Thanks:
We would like to acknowledge funding from the National Science Foundation Award No. 1534340, DMREF that provided support to make this work possible, support from the Office of Naval Research (ONR) under Contract No. ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record