Mostrar el registro sencillo del ítem
dc.contributor.author | Jensen, Zach | es_ES |
dc.contributor.author | Kim, Edward | es_ES |
dc.contributor.author | Kwon, Soonhyoung | es_ES |
dc.contributor.author | Gani, Terry Z.H. | es_ES |
dc.contributor.author | Román-Leshkov, Yuriy | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Olivetti, Elsa | es_ES |
dc.date.accessioned | 2020-09-24T12:30:08Z | |
dc.date.available | 2020-09-24T12:30:08Z | |
dc.date.issued | 2019-05-22 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150669 | |
dc.description.abstract | [EN] Zeolites are porous, aluminosilicate materials with many industrial and "green" applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite's framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 angstrom(3) , and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies. | es_ES |
dc.description.sponsorship | We would like to acknowledge funding from the National Science Foundation Award No. 1534340, DMREF that provided support to make this work possible, support from the Office of Naval Research (ONR) under Contract No. N00014-16-1-2432, and the MIT Energy Initiative. Early work was collaborative under the Department of Energy Basic Energy Science Program through the Materials Project under Grant No. EDCBEE. This work has also been supported by the Spanish Government through the Severo Ochoa Program SEV-2016-0683 and the Grant No. MAT2015971261-R, and by La Caxia Foundation through the MIT-SPAIN SEED FUND Program (LCF/PR/MIT17/11820002). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Central Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Large-Pore zeolite | es_ES |
dc.subject | Molecular-Sieves | es_ES |
dc.subject | Framework-Density | es_ES |
dc.subject | Crystallization | es_ES |
dc.subject | Discovery | es_ES |
dc.subject | Location | es_ES |
dc.subject | Design | es_ES |
dc.subject | Ion | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acscentsci.9b00193 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1534340/US/DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-16-1-2432/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FPR%2FMIT17%2F11820002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Jensen, Z.; Kim, E.; Kwon, S.; Gani, TZ.; Román-Leshkov, Y.; Moliner Marin, M.; Corma Canós, A.... (2019). A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction. ACS Central Science. 5(5):892-899. https://doi.org/10.1021/acscentsci.9b00193 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acscentsci.9b00193 | es_ES |
dc.description.upvformatpinicio | 892 | es_ES |
dc.description.upvformatpfin | 899 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2374-7951 | es_ES |
dc.identifier.pmid | 31139725 | es_ES |
dc.identifier.pmcid | PMC6535764 | es_ES |
dc.relation.pasarela | S\406638 | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |