- -

Automatic visual inspection of corn kernels using principal component analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic visual inspection of corn kernels using principal component analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Valiente González, José Miguel es_ES
dc.contributor.author Potter, Paulus es_ES
dc.date.accessioned 2012-03-20T11:19:12Z
dc.date.available 2012-03-20T11:19:12Z
dc.date.created 2012-03-12
dc.date.issued 2012-03-20
dc.identifier.uri http://hdl.handle.net/10251/15074
dc.description.abstract During the processing of corn, corn kernels are inspected for the purpose of determining the quality and stock value. There are many kinds of defects which can reduce the stock value whereas the difference between defects or an acceptable corn kernel can be sometimes minor. Food inspection uses computer vision more and more nowadays, but above forms a challenge when automatically inspecting corn kernels. This paper presents an algorithm based principle component analysis (PCA) to decide whether a corn kernel has an acceptable or rejectable quality. Experiments using 400 images show that the method is promising (89% of success using HSV color space and 99 histogram value), but extensions are recommended to further improve results. es_ES
dc.format.extent 30 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Corn kernels es_ES
dc.subject Food inspection es_ES
dc.subject Computer vision es_ES
dc.subject Principal component analysis es_ES
dc.subject.other Ingeniería Informática-Enginyeria Informàtica es_ES
dc.title Automatic visual inspection of corn kernels using principal component analysis es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Potter, P. (2012). Automatic visual inspection of corn kernels using principal component analysis. http://hdl.handle.net/10251/15074. es_ES
dc.description.accrualMethod Archivo delegado es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem