- -

Silicon Photonics Rectangular Universal Interferometer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Silicon Photonics Rectangular Universal Interferometer

Mostrar el registro completo del ítem

Pérez-López, D.; Gasulla Mestre, I.; Fraile, FJ.; Crudgington, L.; Thomson, D.; Khokhar, AZ.; Li, K.... (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Review. 11(6):1-13. https://doi.org/10.1002/lpor.201700219

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151039

Ficheros en el ítem

Metadatos del ítem

Título: Silicon Photonics Rectangular Universal Interferometer
Autor: Pérez-López, Daniel Gasulla Mestre, Ivana Fraile, Francisco Javier Crudgington, Lee Thomson, David Khokhar, Ali Z. Li, Ke Cao, Wei Mashanovich, Goran Z. Capmany Francoy, José
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Universal multiport photonic interferometers that can implement any arbitrary unitary transformation between input and output optical modes are essential to support advanced optical functions. Integrated versions of ...[+]
Palabras clave: Integrated optics devices , Integrated optics , Quantum optics
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Laser & Photonics Review. (issn: 1863-8880 )
DOI: 10.1002/lpor.201700219
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/lpor.201700219
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/
info:eu-repo/grantAgreement/UKRI//EP%2FL021129%2F1/GB/CORNERSTONE: Capability for OptoelectRoNics, mEtamateRialS, nanoTechnOlogy aNd sEnsing/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/
Agradecimientos:
The authors acknowledge financial support by the ERC ADG-2016 741415 UMWP-Chip, the Generalitat Valenciana PROMETEO 2013/012 research excellency award, I. G. acknowledges the funding through the Spanish MINECO Ramon y Cajal ...[+]
Tipo: Artículo

References

Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 58-61. doi:10.1103/physrevlett.73.58

Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001

Carolan, J., Harrold, C., Sparrow, C., Martin-Lopez, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642 [+]
Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 58-61. doi:10.1103/physrevlett.73.58

Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001

Carolan, J., Harrold, C., Sparrow, C., Martin-Lopez, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642

Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218

Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349

Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254

Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360

Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994

Stabile, R., Albores-Mejia, A., Rohit, A., & Williams, K. A. (2016). Integrated optical switch matrices for packet data networks. Microsystems & Nanoengineering, 2(1). doi:10.1038/micronano.2015.42

Miller, D. A. B. (2015). Perfect optics with imperfect components. Optica, 2(8), 747. doi:10.1364/optica.2.000747

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460

Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., … Melloni, A. (2014). Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1(3), 129. doi:10.1364/optica.1.000129

Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348

Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854

Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093

Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985

Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1

Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228

Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135

Bonneau, D., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., … Thompson, M. G. (2012). Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New Journal of Physics, 14(4), 045003. doi:10.1088/1367-2630/14/4/045003

Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756

Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643

Jinguji, K. (1996). Synthesis of coherent two-port optical delay-line circuit with ring waveguides. Journal of Lightwave Technology, 14(8), 1882-1898. doi:10.1109/50.532026

Madsen, C. K. (2000). General IIR optical filter design for WDM applications using all-pass filters. Journal of Lightwave Technology, 18(6), 860-868. doi:10.1109/50.848399

Yariv, A., Xu, Y., Lee, R. K., & Scherer, A. (1999). Coupled-resonator optical waveguide:?a proposal and analysis. Optics Letters, 24(11), 711. doi:10.1364/ol.24.000711

Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818

Yvind, K., & Hvam, J. M. (2010). High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Applied Physics Letters, 96(5), 051126. doi:10.1063/1.3304791

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem