- -

Silicon Photonics Rectangular Universal Interferometer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Silicon Photonics Rectangular Universal Interferometer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author Gasulla Mestre, Ivana es_ES
dc.contributor.author Fraile, Francisco Javier es_ES
dc.contributor.author Crudgington, Lee es_ES
dc.contributor.author Thomson, David es_ES
dc.contributor.author Khokhar, Ali Z. es_ES
dc.contributor.author Li, Ke es_ES
dc.contributor.author Cao, Wei es_ES
dc.contributor.author Mashanovich, Goran Z. es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2020-10-04T03:31:44Z
dc.date.available 2020-10-04T03:31:44Z
dc.date.issued 2017-11 es_ES
dc.identifier.issn 1863-8880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151039
dc.description.abstract [EN] Universal multiport photonic interferometers that can implement any arbitrary unitary transformation between input and output optical modes are essential to support advanced optical functions. Integrated versions of these components can be implemented by means of either a fixed triangular or a fixed rectangular arrangement of the same components. We propose the implementation of a fixed rectangular universal interferometer using a reconfigurable hexagonal waveguide mesh circuit. A suitable adaptation synthesis algorithm tailored to this mesh configuration is provided and the experimental demonstration of a rectangular multiport interferometer by means of a fabricated silicon photonics chip is reported. The 7¿hexagonal cell chip can implement 2 × 2, 3 × 3 and 4 × 4 arbitrary unitary transformations. The proposed hexagonal waveguide mesh operates in a similar way as a Field Programmable Gate Array (FPGA) in electronics. We believe that this work represents an important step¿forward towards fully programmable and integrable multiport interferometers. es_ES
dc.description.sponsorship The authors acknowledge financial support by the ERC ADG-2016 741415 UMWP-Chip, the Generalitat Valenciana PROMETEO 2013/012 research excellency award, I. G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship. The chips were fabricated in the frame of the CORNERSTONE project funded by the EPSRC in the UK (EP/L021129/1) es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Laser & Photonics Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Integrated optics devices es_ES
dc.subject Integrated optics es_ES
dc.subject Quantum optics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Silicon Photonics Rectangular Universal Interferometer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/lpor.201700219 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FL021129%2F1/GB/CORNERSTONE: Capability for OptoelectRoNics, mEtamateRialS, nanoTechnOlogy aNd sEnsing/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Pérez-López, D.; Gasulla Mestre, I.; Fraile, FJ.; Crudgington, L.; Thomson, D.; Khokhar, AZ.; Li, K.... (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Review. 11(6):1-13. https://doi.org/10.1002/lpor.201700219 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/lpor.201700219 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\349510 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 58-61. doi:10.1103/physrevlett.73.58 es_ES
dc.description.references Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001 es_ES
dc.description.references Carolan, J., Harrold, C., Sparrow, C., Martin-Lopez, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642 es_ES
dc.description.references Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218 es_ES
dc.description.references Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349 es_ES
dc.description.references Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 es_ES
dc.description.references Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360 es_ES
dc.description.references Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994 es_ES
dc.description.references Stabile, R., Albores-Mejia, A., Rohit, A., & Williams, K. A. (2016). Integrated optical switch matrices for packet data networks. Microsystems & Nanoengineering, 2(1). doi:10.1038/micronano.2015.42 es_ES
dc.description.references Miller, D. A. B. (2015). Perfect optics with imperfect components. Optica, 2(8), 747. doi:10.1364/optica.2.000747 es_ES
dc.description.references Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460 es_ES
dc.description.references Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., … Melloni, A. (2014). Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1(3), 129. doi:10.1364/optica.1.000129 es_ES
dc.description.references Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348 es_ES
dc.description.references Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265 es_ES
dc.description.references Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 es_ES
dc.description.references Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 es_ES
dc.description.references Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985 es_ES
dc.description.references Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 es_ES
dc.description.references Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228 es_ES
dc.description.references Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135 es_ES
dc.description.references Bonneau, D., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., … Thompson, M. G. (2012). Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New Journal of Physics, 14(4), 045003. doi:10.1088/1367-2630/14/4/045003 es_ES
dc.description.references Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756 es_ES
dc.description.references Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643 es_ES
dc.description.references Jinguji, K. (1996). Synthesis of coherent two-port optical delay-line circuit with ring waveguides. Journal of Lightwave Technology, 14(8), 1882-1898. doi:10.1109/50.532026 es_ES
dc.description.references Madsen, C. K. (2000). General IIR optical filter design for WDM applications using all-pass filters. Journal of Lightwave Technology, 18(6), 860-868. doi:10.1109/50.848399 es_ES
dc.description.references Yariv, A., Xu, Y., Lee, R. K., & Scherer, A. (1999). Coupled-resonator optical waveguide:?a proposal and analysis. Optics Letters, 24(11), 711. doi:10.1364/ol.24.000711 es_ES
dc.description.references Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818 es_ES
dc.description.references Yvind, K., & Hvam, J. M. (2010). High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Applied Physics Letters, 96(5), 051126. doi:10.1063/1.3304791 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem