Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-López, Daniel![]() |
es_ES |
dc.contributor.author | Gasulla Mestre, Ivana![]() |
es_ES |
dc.contributor.author | Fraile, Francisco Javier![]() |
es_ES |
dc.contributor.author | Crudgington, Lee![]() |
es_ES |
dc.contributor.author | Thomson, David![]() |
es_ES |
dc.contributor.author | Khokhar, Ali Z.![]() |
es_ES |
dc.contributor.author | Li, Ke![]() |
es_ES |
dc.contributor.author | Cao, Wei![]() |
es_ES |
dc.contributor.author | Mashanovich, Goran Z.![]() |
es_ES |
dc.contributor.author | Capmany Francoy, José![]() |
es_ES |
dc.date.accessioned | 2020-10-04T03:31:44Z | |
dc.date.available | 2020-10-04T03:31:44Z | |
dc.date.issued | 2017-11 | es_ES |
dc.identifier.issn | 1863-8880 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151039 | |
dc.description.abstract | [EN] Universal multiport photonic interferometers that can implement any arbitrary unitary transformation between input and output optical modes are essential to support advanced optical functions. Integrated versions of these components can be implemented by means of either a fixed triangular or a fixed rectangular arrangement of the same components. We propose the implementation of a fixed rectangular universal interferometer using a reconfigurable hexagonal waveguide mesh circuit. A suitable adaptation synthesis algorithm tailored to this mesh configuration is provided and the experimental demonstration of a rectangular multiport interferometer by means of a fabricated silicon photonics chip is reported. The 7¿hexagonal cell chip can implement 2 × 2, 3 × 3 and 4 × 4 arbitrary unitary transformations. The proposed hexagonal waveguide mesh operates in a similar way as a Field Programmable Gate Array (FPGA) in electronics. We believe that this work represents an important step¿forward towards fully programmable and integrable multiport interferometers. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support by the ERC ADG-2016 741415 UMWP-Chip, the Generalitat Valenciana PROMETEO 2013/012 research excellency award, I. G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship. The chips were fabricated in the frame of the CORNERSTONE project funded by the EPSRC in the UK (EP/L021129/1) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Laser & Photonics Review | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Integrated optics devices | es_ES |
dc.subject | Integrated optics | es_ES |
dc.subject | Quantum optics | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Silicon Photonics Rectangular Universal Interferometer | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/lpor.201700219 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FL021129%2F1/GB/CORNERSTONE: Capability for OptoelectRoNics, mEtamateRialS, nanoTechnOlogy aNd sEnsing/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Pérez-López, D.; Gasulla Mestre, I.; Fraile, FJ.; Crudgington, L.; Thomson, D.; Khokhar, AZ.; Li, K.... (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Review. 11(6):1-13. https://doi.org/10.1002/lpor.201700219 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/lpor.201700219 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\349510 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 58-61. doi:10.1103/physrevlett.73.58 | es_ES |
dc.description.references | Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001 | es_ES |
dc.description.references | Carolan, J., Harrold, C., Sparrow, C., Martin-Lopez, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642 | es_ES |
dc.description.references | Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218 | es_ES |
dc.description.references | Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349 | es_ES |
dc.description.references | Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 | es_ES |
dc.description.references | Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360 | es_ES |
dc.description.references | Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994 | es_ES |
dc.description.references | Stabile, R., Albores-Mejia, A., Rohit, A., & Williams, K. A. (2016). Integrated optical switch matrices for packet data networks. Microsystems & Nanoengineering, 2(1). doi:10.1038/micronano.2015.42 | es_ES |
dc.description.references | Miller, D. A. B. (2015). Perfect optics with imperfect components. Optica, 2(8), 747. doi:10.1364/optica.2.000747 | es_ES |
dc.description.references | Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460 | es_ES |
dc.description.references | Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., … Melloni, A. (2014). Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1(3), 129. doi:10.1364/optica.1.000129 | es_ES |
dc.description.references | Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348 | es_ES |
dc.description.references | Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265 | es_ES |
dc.description.references | Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 | es_ES |
dc.description.references | Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 | es_ES |
dc.description.references | Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228 | es_ES |
dc.description.references | Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135 | es_ES |
dc.description.references | Bonneau, D., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., … Thompson, M. G. (2012). Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New Journal of Physics, 14(4), 045003. doi:10.1088/1367-2630/14/4/045003 | es_ES |
dc.description.references | Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756 | es_ES |
dc.description.references | Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643 | es_ES |
dc.description.references | Jinguji, K. (1996). Synthesis of coherent two-port optical delay-line circuit with ring waveguides. Journal of Lightwave Technology, 14(8), 1882-1898. doi:10.1109/50.532026 | es_ES |
dc.description.references | Madsen, C. K. (2000). General IIR optical filter design for WDM applications using all-pass filters. Journal of Lightwave Technology, 18(6), 860-868. doi:10.1109/50.848399 | es_ES |
dc.description.references | Yariv, A., Xu, Y., Lee, R. K., & Scherer, A. (1999). Coupled-resonator optical waveguide:?a proposal and analysis. Optics Letters, 24(11), 711. doi:10.1364/ol.24.000711 | es_ES |
dc.description.references | Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818 | es_ES |
dc.description.references | Yvind, K., & Hvam, J. M. (2010). High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Applied Physics Letters, 96(5), 051126. doi:10.1063/1.3304791 | es_ES |