- -

Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism

Show full item record

Zheng, K.; Tang, D.; Giret Boggino, AS.; Gu, W.; Wu, X. (2015). Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 229(S1):121-134. https://doi.org/10.1177/0954405414558699

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151040

Files in this item

Item Metadata

Title: Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism
Author: Zheng, Kun Tang, Dunbing Giret Boggino, Adriana Susana Gu, Wenbin Wu, Xing
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] With the development of the market globalisation trend and increasing customer orientation, many uncertainties have entered into the manufacturing context. To create an agile response to the emergence of and change ...[+]
Subjects: Dynamic re-scheduling , Neuroendocrine-inspired manufacturing system , Bio-inspired manufacturing cell , Neuroendocrine regulation , Hormone regulation
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. (issn: 0954-4054 )
DOI: 10.1177/0954405414558699
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/0954405414558699
Project ID:
info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/
info:eu-repo/grantAgreement/Jiangsu Province Science Foundation for Excellent Youths//BK20121011/
info:eu-repo/grantAgreement/NSFC//51175262/
info:eu-repo/grantAgreement/NSFC//61105114/
Thanks:
This research was sponsored by the National Natural Science Foundation of China (NSFC) under Grant No. 51175262 and No. 61105114 and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK20121011. This ...[+]
Type: Artículo

References

Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. doi:10.1016/j.compchemeng.2009.06.007

Yandra, & Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous population for solving flowshop scheduling problems. International Journal of Computer Integrated Manufacturing, 20(5), 465-477. doi:10.1080/09511920601160288

Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114-123. doi:10.1016/j.cirpj.2009.10.001 [+]
Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. doi:10.1016/j.compchemeng.2009.06.007

Yandra, & Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous population for solving flowshop scheduling problems. International Journal of Computer Integrated Manufacturing, 20(5), 465-477. doi:10.1080/09511920601160288

Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114-123. doi:10.1016/j.cirpj.2009.10.001

Renna, P. (2011). Multi-agent based scheduling in manufacturing cells in a dynamic environment. International Journal of Production Research, 49(5), 1285-1301. doi:10.1080/00207543.2010.518736

Qin, L., & Kan, S. (2013). Production Dynamic Scheduling Method Based on Improved Contract Net of Multi-agent. Advances in Intelligent Systems and Computing, 929-936. doi:10.1007/978-3-642-31656-2_128

Iwamura, K., Mayumi, N., Tanimizu, Y., & Sugimura, N. (2010). A Study on Real-time Scheduling for Holonic Manufacturing Systems - Application of Reinforcement Learning -. Service Robotics and Mechatronics, 201-204. doi:10.1007/978-1-84882-694-6_35

Jana, T. K., Bairagi, B., Paul, S., Sarkar, B., & Saha, J. (2013). Dynamic schedule execution in an agent based holonic manufacturing system. Journal of Manufacturing Systems, 32(4), 801-816. doi:10.1016/j.jmsy.2013.07.004

Dan, Z., Cai, L., & Zheng, L. (2009). Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Science and Technology, 14(3), 407-412. doi:10.1016/s1007-0214(09)70058-6

Hsieh, F.-S. (2009). Developing cooperation mechanism for multi-agent systems with Petri nets. Engineering Applications of Artificial Intelligence, 22(4-5), 616-627. doi:10.1016/j.engappai.2009.02.006

Tang, D., Gu, W., Wang, L., & Zheng, K. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255-1268. doi:10.1080/00207543.2010.518734

Keenan, D. M., Licinio, J., & Veldhuis, J. D. (2001). A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. Proceedings of the National Academy of Sciences, 98(7), 4028-4033. doi:10.1073/pnas.051624198

Farhy, L. S. (2004). Modeling of Oscillations in Endocrine Networks with Feedback. Numerical Computer Methods, Part E, 54-81. doi:10.1016/s0076-6879(04)84005-9

Cavalieri, S., Macchi, M., & Valckenaers, P. (2003). Journal of Intelligent Manufacturing, 14(1), 43-58. doi:10.1023/a:1022287212706

Leitão, P., & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing, 24(5), 625-634. doi:10.1016/j.rcim.2007.09.005

Bal, M., & Hashemipour, M. (2009). Virtual factory approach for implementation of holonic control in industrial applications: A case study in die-casting industry. Robotics and Computer-Integrated Manufacturing, 25(3), 570-581. doi:10.1016/j.rcim.2008.03.020

Leitao P. An agile and adaptive holonic architecture for manufacturing control. PhD Thesis, University of Porto, Porto, 2004.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record