- -

Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism

Show simple item record

Files in this item

dc.contributor.author Zheng, Kun es_ES
dc.contributor.author Tang, Dunbing es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.contributor.author Gu, Wenbin es_ES
dc.contributor.author Wu, Xing es_ES
dc.date.accessioned 2020-10-04T03:31:46Z
dc.date.available 2020-10-04T03:31:46Z
dc.date.issued 2015-02 es_ES
dc.identifier.issn 0954-4054 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151040
dc.description.abstract [EN] With the development of the market globalisation trend and increasing customer orientation, many uncertainties have entered into the manufacturing context. To create an agile response to the emergence of and change in conditions, this article presents a dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. The dynamic re-scheduling function is the result of cooperation among several autonomous bio-inspired manufacturing cells with computing power and optimisation capabilities. The dynamic re-scheduling model is designed based on hormone regulation principles to agilely respond to the frequent occurrence of unexpected disturbances at the shop floor level. The cooperation mechanisms of the dynamic re-scheduling model are described in detail, and a test bed is set up to simulate and verify the dynamic re-scheduling approach. The results verify that the proposed method is able to improve the performances and enhance the stability of a manufacturing system es_ES
dc.description.sponsorship This research was sponsored by the National Natural Science Foundation of China (NSFC) under Grant No. 51175262 and No. 61105114 and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK20121011. This research was also sponsored by the CASES project supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under grant agreement No. 294931 es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Dynamic re-scheduling es_ES
dc.subject Neuroendocrine-inspired manufacturing system es_ES
dc.subject Bio-inspired manufacturing cell es_ES
dc.subject Neuroendocrine regulation es_ES
dc.subject Hormone regulation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954405414558699 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Jiangsu Province Science Foundation for Excellent Youths//BK20121011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51175262/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61105114/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Zheng, K.; Tang, D.; Giret Boggino, AS.; Gu, W.; Wu, X. (2015). Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 229(S1):121-134. https://doi.org/10.1177/0954405414558699 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0954405414558699 es_ES
dc.description.upvformatpinicio 121 es_ES
dc.description.upvformatpfin 134 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 229 es_ES
dc.description.issue S1 es_ES
dc.relation.pasarela S\296324 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Jiangsu Province Science Foundation for Excellent Youths, China es_ES
dc.description.references Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. doi:10.1016/j.compchemeng.2009.06.007 es_ES
dc.description.references Yandra, & Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous population for solving flowshop scheduling problems. International Journal of Computer Integrated Manufacturing, 20(5), 465-477. doi:10.1080/09511920601160288 es_ES
dc.description.references Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114-123. doi:10.1016/j.cirpj.2009.10.001 es_ES
dc.description.references Renna, P. (2011). Multi-agent based scheduling in manufacturing cells in a dynamic environment. International Journal of Production Research, 49(5), 1285-1301. doi:10.1080/00207543.2010.518736 es_ES
dc.description.references Qin, L., & Kan, S. (2013). Production Dynamic Scheduling Method Based on Improved Contract Net of Multi-agent. Advances in Intelligent Systems and Computing, 929-936. doi:10.1007/978-3-642-31656-2_128 es_ES
dc.description.references Iwamura, K., Mayumi, N., Tanimizu, Y., & Sugimura, N. (2010). A Study on Real-time Scheduling for Holonic Manufacturing Systems - Application of Reinforcement Learning -. Service Robotics and Mechatronics, 201-204. doi:10.1007/978-1-84882-694-6_35 es_ES
dc.description.references Jana, T. K., Bairagi, B., Paul, S., Sarkar, B., & Saha, J. (2013). Dynamic schedule execution in an agent based holonic manufacturing system. Journal of Manufacturing Systems, 32(4), 801-816. doi:10.1016/j.jmsy.2013.07.004 es_ES
dc.description.references Dan, Z., Cai, L., & Zheng, L. (2009). Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Science and Technology, 14(3), 407-412. doi:10.1016/s1007-0214(09)70058-6 es_ES
dc.description.references Hsieh, F.-S. (2009). Developing cooperation mechanism for multi-agent systems with Petri nets. Engineering Applications of Artificial Intelligence, 22(4-5), 616-627. doi:10.1016/j.engappai.2009.02.006 es_ES
dc.description.references Tang, D., Gu, W., Wang, L., & Zheng, K. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255-1268. doi:10.1080/00207543.2010.518734 es_ES
dc.description.references Keenan, D. M., Licinio, J., & Veldhuis, J. D. (2001). A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. Proceedings of the National Academy of Sciences, 98(7), 4028-4033. doi:10.1073/pnas.051624198 es_ES
dc.description.references Farhy, L. S. (2004). Modeling of Oscillations in Endocrine Networks with Feedback. Numerical Computer Methods, Part E, 54-81. doi:10.1016/s0076-6879(04)84005-9 es_ES
dc.description.references Cavalieri, S., Macchi, M., & Valckenaers, P. (2003). Journal of Intelligent Manufacturing, 14(1), 43-58. doi:10.1023/a:1022287212706 es_ES
dc.description.references Leitão, P., & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing, 24(5), 625-634. doi:10.1016/j.rcim.2007.09.005 es_ES
dc.description.references Bal, M., & Hashemipour, M. (2009). Virtual factory approach for implementation of holonic control in industrial applications: A case study in die-casting industry. Robotics and Computer-Integrated Manufacturing, 25(3), 570-581. doi:10.1016/j.rcim.2008.03.020 es_ES
dc.description.references Leitao P. An agile and adaptive holonic architecture for manufacturing control. PhD Thesis, University of Porto, Porto, 2004. es_ES


This item appears in the following Collection(s)

Show simple item record