- -

Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Triana, Julian es_ES
dc.contributor.author Montagud, Arnau es_ES
dc.contributor.author Siurana, Maria es_ES
dc.contributor.author Fuente, David es_ES
dc.contributor.author Urchueguia, Arantxa es_ES
dc.contributor.author Gamermann, Daniel es_ES
dc.contributor.author Torres, Javier es_ES
dc.contributor.author TENA, JOSÉ es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2020-10-04T03:31:59Z
dc.date.available 2020-10-04T03:31:59Z
dc.date.issued 2014-08-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151045
dc.description.abstract [EN] The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 308518 (CyanoFactory), from the Spanish Ministerio de Educación Cultura y Deporte grant FPU12/05873 through the program FPU and from the UniversitatPolitècnia de València grant Contratos Predoctorales FPI 2013 es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Metabolites es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Genome-scale metabolic network reconstruction es_ES
dc.subject Systems biology es_ES
dc.subject Metabolic pathways es_ES
dc.subject Flux balance analysis es_ES
dc.subject Biological databases es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/metabo4030680 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/308518/EU/Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU12%2F05873/ES/FPU12%2F05873/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Triana, J.; Montagud, A.; Siurana, M.; Fuente, D.; Urchueguia, A.; Gamermann, D.; Torres, J.... (2014). Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942. Metabolites. 4(3):680-698. https://doi.org/10.3390/metabo4030680 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/metabo4030680 es_ES
dc.description.upvformatpinicio 680 es_ES
dc.description.upvformatpfin 698 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2218-1989 es_ES
dc.identifier.pmid 25141288 es_ES
dc.identifier.pmcid PMC4192687 es_ES
dc.relation.pasarela S\278781 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Shestakov, S. V., & Khyen, N. T. (1970). Evidence for genetic transformation in blue-green alga Anacystis nidulans. Molecular and General Genetics MGG, 107(4), 372-375. doi:10.1007/bf00441199 es_ES
dc.description.references Andersson, C. R., Tsinoremas, N. F., Shelton, J., Lebedeva, N. V., Yarrow, J., Min, H., & Golden, S. S. (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods in Enzymology, 527-542. doi:10.1016/s0076-6879(00)05511-7 es_ES
dc.description.references Rippka, R., Stanier, R. Y., Deruelles, J., Herdman, M., & Waterbury, J. B. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology, 111(1), 1-61. doi:10.1099/00221287-111-1-1 es_ES
dc.description.references Scanlan, D. J., & West, N. J. (2002). Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiology Ecology, 40(1), 1-12. doi:10.1111/j.1574-6941.2002.tb00930.x es_ES
dc.description.references Ducat, D. C., Way, J. C., & Silver, P. A. (2011). Engineering cyanobacteria to generate high-value products. Trends in Biotechnology, 29(2), 95-103. doi:10.1016/j.tibtech.2010.12.003 es_ES
dc.description.references Snoep, J. L., Bruggeman, F., Olivier, B. G., & Westerhoff, H. V. (2006). Towards building the silicon cell: A modular approach. Biosystems, 83(2-3), 207-216. doi:10.1016/j.biosystems.2005.07.006 es_ES
dc.description.references Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., & Palsson, B. O. (2003). Metabolic pathways in the post-genome era. Trends in Biochemical Sciences, 28(5), 250-258. doi:10.1016/s0968-0004(03)00064-1 es_ES
dc.description.references Montagud, A., Navarro, E., Fernández de Córdoba, P., Urchueguía, J. F., & Patil, K. R. (2010). Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Systems Biology, 4(1). doi:10.1186/1752-0509-4-156 es_ES
dc.description.references Montagud, A., Zelezniak, A., Navarro, E., de Córdoba, P. F., Urchueguía, J. F., & Patil, K. R. (2011). Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology Journal, 6(3), 330-342. doi:10.1002/biot.201000109 es_ES
dc.description.references Park, J., Kim, T., & Lee, S. (2011). Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Systems Biology, 5(1), 101. doi:10.1186/1752-0509-5-101 es_ES
dc.description.references Milne, C. B., Eddy, J. A., Raju, R., Ardekani, S., Kim, P.-J., Senger, R. S., … Price, N. D. (2011). Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Systems Biology, 5(1), 130. doi:10.1186/1752-0509-5-130 es_ES
dc.description.references Van den Hondel, C. A., Verbeek, S., van der Ende, A., Weisbeek, P. J., Borrias, W. E., & van Arkel, G. A. (1980). Introduction of transposon Tn901 into a plasmid of Anacystis nidulans: preparation for cloning in cyanobacteria. Proceedings of the National Academy of Sciences, 77(3), 1570-1574. doi:10.1073/pnas.77.3.1570 es_ES
dc.description.references Plas, J., Oosterhoff-Teertstra, R., Borrias, M., & Weisbeek, P. (1992). Identification of replication and stability functions in the complete nucleotide sequence of plasmid pUH24 from the cyanobacterium Synechococcus sp. PCC 7942. Molecular Microbiology, 6(5), 653-664. doi:10.1111/j.1365-2958.1992.tb01513.x es_ES
dc.description.references Chen, Y., Kay Holtman, C., Magnuson, R. D., Youderian, P. A., & Golden, S. S. (2008). The complete sequence and functional analysis of pANL, the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942. Plasmid, 59(3), 176-192. doi:10.1016/j.plasmid.2008.01.005 es_ES
dc.description.references Weise, S., Grosse, I., Klukas, C., Koschützki, D., Scholz, U., Schreiber, F., & Junker, B. H. (2006). Meta-All: a system for managing metabolic pathway information. BMC Bioinformatics, 7(1). doi:10.1186/1471-2105-7-465 es_ES
dc.description.references Forster, J. (2003). Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Research, 13(2), 244-253. doi:10.1101/gr.234503 es_ES
dc.description.references Price, N. D., Papin, J. A., Schilling, C. H., & Palsson, B. O. (2003). Genome-scale microbial in silico models: the constraints-based approach. Trends in Biotechnology, 21(4), 162-169. doi:10.1016/s0167-7799(03)00030-1 es_ES
dc.description.references Durot, M., Bourguignon, P.-Y., & Schachter, V. (2009). Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiology Reviews, 33(1), 164-190. doi:10.1111/j.1574-6976.2008.00146.x es_ES
dc.description.references Price, N. D., Reed, J. L., & Palsson, B. Ø. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Reviews Microbiology, 2(11), 886-897. doi:10.1038/nrmicro1023 es_ES
dc.description.references Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245-248. doi:10.1038/nbt.1614 es_ES
dc.description.references Thiele, I., & Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols, 5(1), 93-121. doi:10.1038/nprot.2009.203 es_ES
dc.description.references Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., & Palsson, B. Ø. (2008). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7(2), 129-143. doi:10.1038/nrmicro1949 es_ES
dc.description.references Notebaart, R. A., van Enckevort, F. H., Francke, C., Siezen, R. J., & Teusink, B. (2006). BMC Bioinformatics, 7(1), 296. doi:10.1186/1471-2105-7-296 es_ES
dc.description.references Karp, P. D., Paley, S., & Romero, P. (2002). The Pathway Tools software. Bioinformatics, 18(Suppl 1), S225-S232. doi:10.1093/bioinformatics/18.suppl_1.s225 es_ES
dc.description.references Reyes, R., Gamermann, D., Montagud, A., Fuente, D., Triana, J., Urchueguía, J. F., & de Córdoba, P. F. (2012). Automation on the Generation of Genome-Scale Metabolic Models. Journal of Computational Biology, 19(12), 1295-1306. doi:10.1089/cmb.2012.0183 es_ES
dc.description.references Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2009). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38(suppl_1), D355-D360. doi:10.1093/nar/gkp896 es_ES
dc.description.references Caspi, R. (2006). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research, 34(90001), D511-D516. doi:10.1093/nar/gkj128 es_ES
dc.description.references Overton, I. M., van Niekerk, C. A. J., Carter, L. G., Dawson, A., Martin, D. M. A., Cameron, S., … Barton, G. J. (2008). TarO: a target optimisation system for structural biology. Nucleic Acids Research, 36(Web Server), W190-W196. doi:10.1093/nar/gkn141 es_ES
dc.description.references SCHILLING, C. H., LETSCHER, D., & PALSSON, B. Ø. (2000). Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology, 203(3), 229-248. doi:10.1006/jtbi.2000.1073 es_ES
dc.description.references Pearce, J., & Carr, N. G. (1967). The Metabolism of Acetate by the Blue-green Algae, Anabaena variabilis and Anacystis nidulans. Journal of General Microbiology, 49(2), 301-313. doi:10.1099/00221287-49-2-301 es_ES
dc.description.references Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., … Laibe, C. (2010). BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Systems Biology, 4(1), 92. doi:10.1186/1752-0509-4-92 es_ES
dc.description.references Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 es_ES
dc.description.references Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019 es_ES
dc.description.references Barabási, A.-L., & Bonabeau, E. (2003). Scale-Free Networks. Scientific American, 288(5), 60-69. doi:10.1038/scientificamerican0503-60 es_ES
dc.description.references Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113. doi:10.1038/nrg1272 es_ES
dc.description.references Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., … Palsson, B. Ø. (2007). A genome‐scale metabolic reconstruction forEscherichia coliK‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 3(1), 121. doi:10.1038/msb4100155 es_ES
dc.description.references Csete, M., & Doyle, J. (2004). Bow ties, metabolism and disease. Trends in Biotechnology, 22(9), 446-450. doi:10.1016/j.tibtech.2004.07.007 es_ES
dc.description.references Hardy, M. (2010). Pareto’s Law. The Mathematical Intelligencer, 32(3), 38-43. doi:10.1007/s00283-010-9159-2 es_ES
dc.description.references Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323-351. doi:10.1080/00107510500052444 es_ES
dc.description.references Wagner, A., & Fell, D. A. (2001). The small world inside large metabolic networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1478), 1803-1810. doi:10.1098/rspb.2001.1711 es_ES
dc.description.references Kajiwara, S., Yamada, H., Ohkuni, N., & Ohtaguchi, K. (1997). Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Conversion and Management, 38, S529-S532. doi:10.1016/s0196-8904(96)00322-6 es_ES
dc.description.references Shastri, A. A., & Morgan, J. A. (2005). Flux Balance Analysis of Photoautotrophic Metabolism. Biotechnology Progress, 21(6), 1617-1626. doi:10.1021/bp050246d es_ES
dc.description.references Growth optimization of Synechococcus elongatus PCC7942 in lab flask and 2D photobioreactorhttps://circle.ubc.ca/bitstream/handle/2429/45010/ubc_2013_fall_kuan_david.pdf?sequence=1 es_ES
dc.description.references Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya, A. D., … Palsson, B. Ø. (2010). Omic data from evolved E. coli are consistent with computed optimal growth from genome‐scale models. Molecular Systems Biology, 6(1), 390. doi:10.1038/msb.2010.47 es_ES
dc.description.references Imam, S., Yilmaz, S., Sohmen, U., Gorzalski, A. S., Reed, J. L., Noguera, D. R., & Donohue, T. J. (2011). iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Systems Biology, 5(1), 116. doi:10.1186/1752-0509-5-116 es_ES
dc.description.references Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., Tasaka, M., & Shikanai, T. (2004). Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429(6991), 579-582. doi:10.1038/nature02598 es_ES
dc.description.references Chen, Y., Daviet, L., Schalk, M., Siewers, V., & Nielsen, J. (2013). Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 15, 48-54. doi:10.1016/j.ymben.2012.11.002 es_ES
dc.description.references Shi, S., Chen, Y., Siewers, V., & Nielsen, J. (2014). Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1. mBio, 5(3). doi:10.1128/mbio.01130-14 es_ES
dc.description.references Krivoruchko, A., Serrano-Amatriain, C., Chen, Y., Siewers, V., & Nielsen, J. (2013). Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology & Biotechnology, 40(9), 1051-1056. doi:10.1007/s10295-013-1296-0 es_ES
dc.description.references Robertson, B. R., Tezuka, N., & Watanabe, M. M. (2001). Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. International Journal of Systematic and Evolutionary Microbiology, 51(3), 861-871. doi:10.1099/00207713-51-3-861 es_ES
dc.description.references Patil, K., Rocha, I., Förster, J., & Nielsen, J. (2005). BMC Bioinformatics, 6(1), 308. doi:10.1186/1471-2105-6-308 es_ES
dc.description.references Cvijovic, M., Olivares-Hernandez, R., Agren, R., Dahr, N., Vongsangnak, W., Nookaew, I., … Nielsen, J. (2010). BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Research, 38(Web Server), W144-W149. doi:10.1093/nar/gkq404 es_ES
dc.description.references BioOpt softwarehttp://biomet-toolbox.org/index.php?page=downtools-bioOpt es_ES
dc.description.references Gamermann, D., Montagud, A., Conejero, J. A., Urchueguía, J. F., & de Córdoba, P. F. (2014). New Approach for Phylogenetic Tree Recovery Based on Genome-Scale Metabolic Networks. Journal of Computational Biology, 21(7), 508-519. doi:10.1089/cmb.2013.0150 es_ES
dc.description.references Vu, T. T., Stolyar, S. M., Pinchuk, G. E., Hill, E. A., Kucek, L. A., Brown, R. N., … Reed, J. L. (2012). Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. PLoS Computational Biology, 8(4), e1002460. doi:10.1371/journal.pcbi.1002460 es_ES
dc.description.references Hamilton, J. J., & Reed, J. L. (2012). Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models. PLoS ONE, 7(4), e34670. doi:10.1371/journal.pone.0034670 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem