- -

Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

Mostrar el registro completo del ítem

Triana, J.; Montagud, A.; Siurana, M.; Fuente, D.; Urchueguia, A.; Gamermann, D.; Torres, J.... (2014). Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942. Metabolites. 4(3):680-698. https://doi.org/10.3390/metabo4030680

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151045

Ficheros en el ítem

Metadatos del ítem

Título: Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942
Autor: Triana, Julian Montagud, Arnau Siurana, Maria Fuente, David Urchueguia, Arantxa Gamermann, Daniel Torres, Javier TENA, JOSÉ Fernández de Córdoba, Pedro Urchueguía Schölzel, Javier Fermín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting ...[+]
Palabras clave: Genome-scale metabolic network reconstruction , Systems biology , Metabolic pathways , Flux balance analysis , Biological databases
Derechos de uso: Reconocimiento (by)
Fuente:
Metabolites. (eissn: 2218-1989 )
DOI: 10.3390/metabo4030680
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/metabo4030680
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/308518/EU/Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories/
info:eu-repo/grantAgreement/MECD//FPU12%2F05873/ES/FPU12%2F05873/
Agradecimientos:
The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 308518 (CyanoFactory), from the Spanish Ministerio de Educación ...[+]
Tipo: Artículo

References

Shestakov, S. V., & Khyen, N. T. (1970). Evidence for genetic transformation in blue-green alga Anacystis nidulans. Molecular and General Genetics MGG, 107(4), 372-375. doi:10.1007/bf00441199

Andersson, C. R., Tsinoremas, N. F., Shelton, J., Lebedeva, N. V., Yarrow, J., Min, H., & Golden, S. S. (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods in Enzymology, 527-542. doi:10.1016/s0076-6879(00)05511-7

Rippka, R., Stanier, R. Y., Deruelles, J., Herdman, M., & Waterbury, J. B. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology, 111(1), 1-61. doi:10.1099/00221287-111-1-1 [+]
Shestakov, S. V., & Khyen, N. T. (1970). Evidence for genetic transformation in blue-green alga Anacystis nidulans. Molecular and General Genetics MGG, 107(4), 372-375. doi:10.1007/bf00441199

Andersson, C. R., Tsinoremas, N. F., Shelton, J., Lebedeva, N. V., Yarrow, J., Min, H., & Golden, S. S. (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods in Enzymology, 527-542. doi:10.1016/s0076-6879(00)05511-7

Rippka, R., Stanier, R. Y., Deruelles, J., Herdman, M., & Waterbury, J. B. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology, 111(1), 1-61. doi:10.1099/00221287-111-1-1

Scanlan, D. J., & West, N. J. (2002). Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiology Ecology, 40(1), 1-12. doi:10.1111/j.1574-6941.2002.tb00930.x

Ducat, D. C., Way, J. C., & Silver, P. A. (2011). Engineering cyanobacteria to generate high-value products. Trends in Biotechnology, 29(2), 95-103. doi:10.1016/j.tibtech.2010.12.003

Snoep, J. L., Bruggeman, F., Olivier, B. G., & Westerhoff, H. V. (2006). Towards building the silicon cell: A modular approach. Biosystems, 83(2-3), 207-216. doi:10.1016/j.biosystems.2005.07.006

Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., & Palsson, B. O. (2003). Metabolic pathways in the post-genome era. Trends in Biochemical Sciences, 28(5), 250-258. doi:10.1016/s0968-0004(03)00064-1

Montagud, A., Navarro, E., Fernández de Córdoba, P., Urchueguía, J. F., & Patil, K. R. (2010). Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Systems Biology, 4(1). doi:10.1186/1752-0509-4-156

Montagud, A., Zelezniak, A., Navarro, E., de Córdoba, P. F., Urchueguía, J. F., & Patil, K. R. (2011). Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnology Journal, 6(3), 330-342. doi:10.1002/biot.201000109

Park, J., Kim, T., & Lee, S. (2011). Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Systems Biology, 5(1), 101. doi:10.1186/1752-0509-5-101

Milne, C. B., Eddy, J. A., Raju, R., Ardekani, S., Kim, P.-J., Senger, R. S., … Price, N. D. (2011). Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Systems Biology, 5(1), 130. doi:10.1186/1752-0509-5-130

Van den Hondel, C. A., Verbeek, S., van der Ende, A., Weisbeek, P. J., Borrias, W. E., & van Arkel, G. A. (1980). Introduction of transposon Tn901 into a plasmid of Anacystis nidulans: preparation for cloning in cyanobacteria. Proceedings of the National Academy of Sciences, 77(3), 1570-1574. doi:10.1073/pnas.77.3.1570

Plas, J., Oosterhoff-Teertstra, R., Borrias, M., & Weisbeek, P. (1992). Identification of replication and stability functions in the complete nucleotide sequence of plasmid pUH24 from the cyanobacterium Synechococcus sp. PCC 7942. Molecular Microbiology, 6(5), 653-664. doi:10.1111/j.1365-2958.1992.tb01513.x

Chen, Y., Kay Holtman, C., Magnuson, R. D., Youderian, P. A., & Golden, S. S. (2008). The complete sequence and functional analysis of pANL, the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942. Plasmid, 59(3), 176-192. doi:10.1016/j.plasmid.2008.01.005

Weise, S., Grosse, I., Klukas, C., Koschützki, D., Scholz, U., Schreiber, F., & Junker, B. H. (2006). Meta-All: a system for managing metabolic pathway information. BMC Bioinformatics, 7(1). doi:10.1186/1471-2105-7-465

Forster, J. (2003). Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Research, 13(2), 244-253. doi:10.1101/gr.234503

Price, N. D., Papin, J. A., Schilling, C. H., & Palsson, B. O. (2003). Genome-scale microbial in silico models: the constraints-based approach. Trends in Biotechnology, 21(4), 162-169. doi:10.1016/s0167-7799(03)00030-1

Durot, M., Bourguignon, P.-Y., & Schachter, V. (2009). Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiology Reviews, 33(1), 164-190. doi:10.1111/j.1574-6976.2008.00146.x

Price, N. D., Reed, J. L., & Palsson, B. Ø. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Reviews Microbiology, 2(11), 886-897. doi:10.1038/nrmicro1023

Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245-248. doi:10.1038/nbt.1614

Thiele, I., & Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols, 5(1), 93-121. doi:10.1038/nprot.2009.203

Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., & Palsson, B. Ø. (2008). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7(2), 129-143. doi:10.1038/nrmicro1949

Notebaart, R. A., van Enckevort, F. H., Francke, C., Siezen, R. J., & Teusink, B. (2006). BMC Bioinformatics, 7(1), 296. doi:10.1186/1471-2105-7-296

Karp, P. D., Paley, S., & Romero, P. (2002). The Pathway Tools software. Bioinformatics, 18(Suppl 1), S225-S232. doi:10.1093/bioinformatics/18.suppl_1.s225

Reyes, R., Gamermann, D., Montagud, A., Fuente, D., Triana, J., Urchueguía, J. F., & de Córdoba, P. F. (2012). Automation on the Generation of Genome-Scale Metabolic Models. Journal of Computational Biology, 19(12), 1295-1306. doi:10.1089/cmb.2012.0183

Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2009). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38(suppl_1), D355-D360. doi:10.1093/nar/gkp896

Caspi, R. (2006). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research, 34(90001), D511-D516. doi:10.1093/nar/gkj128

Overton, I. M., van Niekerk, C. A. J., Carter, L. G., Dawson, A., Martin, D. M. A., Cameron, S., … Barton, G. J. (2008). TarO: a target optimisation system for structural biology. Nucleic Acids Research, 36(Web Server), W190-W196. doi:10.1093/nar/gkn141

SCHILLING, C. H., LETSCHER, D., & PALSSON, B. Ø. (2000). Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology, 203(3), 229-248. doi:10.1006/jtbi.2000.1073

Pearce, J., & Carr, N. G. (1967). The Metabolism of Acetate by the Blue-green Algae, Anabaena variabilis and Anacystis nidulans. Journal of General Microbiology, 49(2), 301-313. doi:10.1099/00221287-49-2-301

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., … Laibe, C. (2010). BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Systems Biology, 4(1), 92. doi:10.1186/1752-0509-4-92

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509

Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019

Barabási, A.-L., & Bonabeau, E. (2003). Scale-Free Networks. Scientific American, 288(5), 60-69. doi:10.1038/scientificamerican0503-60

Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113. doi:10.1038/nrg1272

Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., … Palsson, B. Ø. (2007). A genome‐scale metabolic reconstruction forEscherichia coliK‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 3(1), 121. doi:10.1038/msb4100155

Csete, M., & Doyle, J. (2004). Bow ties, metabolism and disease. Trends in Biotechnology, 22(9), 446-450. doi:10.1016/j.tibtech.2004.07.007

Hardy, M. (2010). Pareto’s Law. The Mathematical Intelligencer, 32(3), 38-43. doi:10.1007/s00283-010-9159-2

Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323-351. doi:10.1080/00107510500052444

Wagner, A., & Fell, D. A. (2001). The small world inside large metabolic networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1478), 1803-1810. doi:10.1098/rspb.2001.1711

Kajiwara, S., Yamada, H., Ohkuni, N., & Ohtaguchi, K. (1997). Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Conversion and Management, 38, S529-S532. doi:10.1016/s0196-8904(96)00322-6

Shastri, A. A., & Morgan, J. A. (2005). Flux Balance Analysis of Photoautotrophic Metabolism. Biotechnology Progress, 21(6), 1617-1626. doi:10.1021/bp050246d

Growth optimization of Synechococcus elongatus PCC7942 in lab flask and 2D photobioreactorhttps://circle.ubc.ca/bitstream/handle/2429/45010/ubc_2013_fall_kuan_david.pdf?sequence=1

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya, A. D., … Palsson, B. Ø. (2010). Omic data from evolved E. coli are consistent with computed optimal growth from genome‐scale models. Molecular Systems Biology, 6(1), 390. doi:10.1038/msb.2010.47

Imam, S., Yilmaz, S., Sohmen, U., Gorzalski, A. S., Reed, J. L., Noguera, D. R., & Donohue, T. J. (2011). iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Systems Biology, 5(1), 116. doi:10.1186/1752-0509-5-116

Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., Tasaka, M., & Shikanai, T. (2004). Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429(6991), 579-582. doi:10.1038/nature02598

Chen, Y., Daviet, L., Schalk, M., Siewers, V., & Nielsen, J. (2013). Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 15, 48-54. doi:10.1016/j.ymben.2012.11.002

Shi, S., Chen, Y., Siewers, V., & Nielsen, J. (2014). Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1. mBio, 5(3). doi:10.1128/mbio.01130-14

Krivoruchko, A., Serrano-Amatriain, C., Chen, Y., Siewers, V., & Nielsen, J. (2013). Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology & Biotechnology, 40(9), 1051-1056. doi:10.1007/s10295-013-1296-0

Robertson, B. R., Tezuka, N., & Watanabe, M. M. (2001). Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. International Journal of Systematic and Evolutionary Microbiology, 51(3), 861-871. doi:10.1099/00207713-51-3-861

Patil, K., Rocha, I., Förster, J., & Nielsen, J. (2005). BMC Bioinformatics, 6(1), 308. doi:10.1186/1471-2105-6-308

Cvijovic, M., Olivares-Hernandez, R., Agren, R., Dahr, N., Vongsangnak, W., Nookaew, I., … Nielsen, J. (2010). BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Research, 38(Web Server), W144-W149. doi:10.1093/nar/gkq404

BioOpt softwarehttp://biomet-toolbox.org/index.php?page=downtools-bioOpt

Gamermann, D., Montagud, A., Conejero, J. A., Urchueguía, J. F., & de Córdoba, P. F. (2014). New Approach for Phylogenetic Tree Recovery Based on Genome-Scale Metabolic Networks. Journal of Computational Biology, 21(7), 508-519. doi:10.1089/cmb.2013.0150

Vu, T. T., Stolyar, S. M., Pinchuk, G. E., Hill, E. A., Kucek, L. A., Brown, R. N., … Reed, J. L. (2012). Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. PLoS Computational Biology, 8(4), e1002460. doi:10.1371/journal.pcbi.1002460

Hamilton, J. J., & Reed, J. L. (2012). Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models. PLoS ONE, 7(4), e34670. doi:10.1371/journal.pone.0034670

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem