- -

Robotic manipulation for the shoe-packaging process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robotic manipulation for the shoe-packaging process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gracia Calandin, Luis Ignacio es_ES
dc.contributor.author Perez-Vidal, Carlos es_ES
dc.contributor.author Mronga, Dennis es_ES
dc.contributor.author Paco, Jose-Manuel de es_ES
dc.contributor.author Azorin, Jose-Maria es_ES
dc.contributor.author Gea, Jose de es_ES
dc.date.accessioned 2020-10-04T03:32:01Z
dc.date.available 2020-10-04T03:32:01Z
dc.date.issued 2017-09 es_ES
dc.identifier.issn 0268-3768 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151046
dc.description.abstract [EN] This paper presents the integration of a robotic system in a human-centered environment, as it can be found in the shoe manufacturing industry. Fashion footwear is nowadays mainly handcrafted due to the big amount of small production tasks. Therefore, the introduction of intelligent robotic systems in this industry may contribute to automate and improve the manual production steps, such us polishing, cleaning, packaging, and visual inspection. Due to the high complexity of the manual tasks in shoe production, cooperative robotic systems (which can work in collaboration with humans) are required. Thus, the focus of the robot lays on grasping, collision detection, and avoidance, as well as on considering the human intervention to supervise the work being performed. For this research, the robot has been equipped with a Kinect camera and a wrist force/ torque sensor so that it is able to detect human interaction and the dynamic environment in order to modify the robot¿s behavior. To illustrate the applicability of the proposed approach, this work presents the experimental results obtained for two actual platforms, which are located at different research laboratories, that share similarities in their morphology, sensor equipment and actuation system. es_ES
dc.description.sponsorship This work has been partly supported by the Ministerio de Economia y Competitividad of the Spanish Government (Key No.: 0201603139 of Invest in Spain program and Grant No. RTC-2016-5408-6) and by the Deutscher Akademischer Austauschdienst (DAAD) of the German Government (Projekt-ID 54368155). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The International Journal of Advanced Manufacturing Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Robotic manipulation es_ES
dc.subject Shoe industry es_ES
dc.subject Human-robot cooperation es_ES
dc.subject Dynamic trajectory planning es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Robotic manipulation for the shoe-packaging process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00170-017-0212-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-5408-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DAAD//54368155/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Gracia Calandin, LI.; Perez-Vidal, C.; Mronga, D.; Paco, JD.; Azorin, J.; Gea, JD. (2017). Robotic manipulation for the shoe-packaging process. The International Journal of Advanced Manufacturing Technology. 92(1-4):1053-1067. https://doi.org/10.1007/s00170-017-0212-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00170-017-0212-6 es_ES
dc.description.upvformatpinicio 1053 es_ES
dc.description.upvformatpfin 1067 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.description.issue 1-4 es_ES
dc.relation.pasarela S\351236 es_ES
dc.contributor.funder Deutscher Akademischer Austauschdienst es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Pedrocchi N, Villagrossi E, Cenati C, Tosatti LM (2017) Design of fuzzy logic controller of industrial robot for roughing the uppers of fashion shoes. Int J Adv Manuf Technol 77(5):939–953 es_ES
dc.description.references Hinojo-Perez JJ, Davia-Aracil M, Jimeno-Morenilla A, Sanchez-Romero L, Salas F (2016) Automation of the shoe last grading process according to international sizing systems. Int J Adv Manuf Technol 85(1):455–467 es_ES
dc.description.references Dura-Gil JV, Ballester-Fernandez A, Cavallaro M, Chiodi A, Ballarino A, von Arnim V., Brondi C, Stellmach D (2016) New technologies for customizing products for people with special necessities: project fashion-able. Int J Comput Integr Manuf. In Press, doi: 10.1080/0951192X.2016.1145803 es_ES
dc.description.references Jatta F, Zanoni L, Fassi I, Negri S (2004) A roughing/cementing robotic cell for custom made shoe manufacture. Int J Comput Integr Manuf 17(7):645–652 es_ES
dc.description.references Nemec B, Zlajpah L (2008) Robotic cell for custom finishing operations. Int J Comput Integr Manuf 21(1):33–42 es_ES
dc.description.references Molfino R, et al (2004) Modular, reconfigurable prehensor for grasping and handling limp materials in the shoe industry. In: IMS international forum, Cernobbio es_ES
dc.description.references Intelishoe - integration and linking of shoe and auxiliary industries. 5Th FP es_ES
dc.description.references Special shoes movement. 7th FP, NMP-2008-SME-2-R.229261, http://www.sshoes.eu es_ES
dc.description.references Vilaca JL, Fonseca J (2007) A new software application for footwear industry. In: IEEE international symposium on intelligent signal processing WISP 2007, pp 1–6 es_ES
dc.description.references Custom, environment and comfort made shoe. 6TH FP [2004-2008] es_ES
dc.description.references Framework of integrated technologies for user centred products. Grant agreement no.: CP-TP 229336-2. NMP2-SE-2009-229336 FIT4U -7TH FP es_ES
dc.description.references Robofoot project website. http://www.robofoot.eu/ . Accessed 2016/ 09/16 es_ES
dc.description.references Montiel E (2007) Customization in the footwear industry. In: proceedings of the MIT congress on mass customization es_ES
dc.description.references Sucan I, Kavraki LE (2012) A sampling-based tree planner for systems with complex dynamics, vol 28 es_ES
dc.description.references Kuffner JJ Jr, LaValle SM (2000) Rrt-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, 2000. ICRA ’00, vol 2, pp 995–1001 es_ES
dc.description.references Ratliff N, Zucker M, Andrew Bagnell J, Srinivasa S (2009) Chomp: gradient optimization techniques for efficient motion planning. In: IEEE international conference on robotics and automation, 2009. ICRA ’09, pp 489–494 es_ES
dc.description.references Brock O, Khatib O (1997) Elastic strips: real-time path modification for mobile manipulation es_ES
dc.description.references Kroger T (2011) Opening the door to new sensor-based robot applications #x2014;the reflexxes motion libraries. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 1–4 es_ES
dc.description.references Berg J, Ferguson D, Kuffner J (2006) Anytime path planning and replanning in dynamic environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 2366–2371 es_ES
dc.description.references Berenson D, Abbeel P, Goldberg K (2012) A robot path planning framework that learns from experience. In: IEEE international conference on robotics and automation. IEEE, pp 3671–3678 es_ES
dc.description.references Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schaeffer A, Beyer A, Eiberger O, Haddadin S, Stemmer A, Grunwald G, Hirzinger G (2010) The kuka-dlr lightweight robot arm — a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st international symposium on and 2010 6th German conference on robotics (ROBOTIK), pp 1–8 es_ES
dc.description.references Rooks B (2006) The harmonious robot. Industrial Robot-an International Journal 33:125–130 es_ES
dc.description.references Vahrenkamp N, Wieland S, Azad P, Gonzalez D, Asfour T, Dillmann R (2008) Visual servoing for humanoid grasping and manipulation tasks. In: 8th IEEE-RAS international conference on humanoid robots, 2008, Humanoids 2008, pp 406–412 es_ES
dc.description.references Pieters RS, et al. (2012) Direct trajectory generation for vision-based obstacle avoidance. In: Proceedings of the 2012 IEEE/RSJ international conference on intelligent robots and systems es_ES
dc.description.references Kinect for windows sensor components and specifications, website. http://msdn.microsoft.com/en-us/library/jj131033.aspx . Accessed 2016/09/16 es_ES
dc.description.references Jatta F, Zanoni L, Fassi I, Negri S (2004) A roughing cementing robotic cell for custom made shoe manufacture. Int J Comput Integr Manuf 17(7):645–652 es_ES
dc.description.references Maurtua I, Ibarguren A, Tellaeche A (2012) Robotics for the benefit of footwear industry. In: International conference on intelligent robotics and applications. Springer, Berlin, pp 235–244 es_ES
dc.description.references Arkin RC (1998) Behavior-based robotics. MIT Press es_ES
dc.description.references Nilsson NJ (1980) Principles of artificial intelligence. Morgan Kaufmann es_ES
dc.description.references Asada H, Slotine J-JE (1986) Robot analysis and control. Wiley es_ES
dc.description.references ROS official web page. http://www.ros.org , (Accessed on 2017/ 02/03) es_ES
dc.description.references Langmann B, Hartmann K, Loffeld O (2012) Depth camera technology comparison and performance evaluation. In: 1st international conference on pattern recognition applications and methods, pp 438–444 es_ES
dc.description.references The player project. free software tools for robot and sensor applications. http://playerstage.sourceforge.net/ , (Accessed on 2017/ 02/03) es_ES
dc.description.references Yet another robot platform (YARP). http://www.yarp.it/ , (Accessed on 2017/02/03) es_ES
dc.description.references The OROCOS project. smarter control in robotics and automation. http://www.orocos.org/ , (Accessed on 2017/02/03) es_ES
dc.description.references CARMEN: Robot navigation toolkit. http://carmen.sourceforge.net/ , (Accessed on 2017/02/03) es_ES
dc.description.references ORCA: Components for robotics. http://orca-robotics.sourceforge.net/ , (Accessed on 2017/02/03) es_ES
dc.description.references MOOS: Mission oriented operating suite. http://www.robots.ox.ac.uk/mobile/MOOS/wiki/pmwiki.php/Main/HomePage , (Accessed on 2017/02/03) es_ES
dc.description.references Microsoft robotics studio. https://www.microsoft.com/en-us/download/details.aspx?id=29081 , (Accessed on 2017/02/03) es_ES
dc.description.references Pr2 ros website. http://www.ros.org/wiki/Robots/PR2 . Accessed 2016/09/16 es_ES
dc.description.references Care-o-bot 3 ros website. http://www.ros.org/wiki/Robots/Care-O-bot . Accessed 2016/09/16 es_ES
dc.description.references Aila, mobile dual-arm manipulation, website. http://robotik.dfki-bremen.de/de/forschung/robotersysteme/aila.html . Accessed 2016/09/16 es_ES
dc.description.references Package libpcan documentation, website. http://www.ros.org/wiki/libpcan . Accessed 2016/09/16 es_ES
dc.description.references Pcan driver for linux, user manual. http://www.peak-system.com . Document version 7.1 (2011-03-21) es_ES
dc.description.references Pcan driver for linux, user manual. http://wiki.ros.org/schunk_powercube_chain . Accessed 2016/09/16 es_ES
dc.description.references Ros nodes documentation, website. http://www.ros.org/wiki/Nodes . Accessed 2016/09/16 es_ES
dc.description.references Ros messages documentation, website. http://www.ros.org/wiki/Messages . Accessed 2016/09/16 es_ES
dc.description.references Ros topics documentation, website. http://www.ros.org/wiki/Topics . Accessed 2016/09/16 es_ES
dc.description.references Ros services documentation, website. http://www.ros.org/wiki/Services . Accessed 2016/09/16 es_ES
dc.description.references Yaml files officials website. http://www.yaml.org/ . Accessed 2016/ 09/16 es_ES
dc.description.references Ros robot model (urdf) documentation website. http://www.ros.org/wiki/urdf . Accessed 2016/09/16 es_ES
dc.description.references Point cloud library (pcl), website. http://www.pointclouds.org/ . Accessed 2016/09/16 es_ES
dc.description.references Arm navigation ros stack, website. http://wiki.ros.org/arm_navigation . Accessed 2016/09/16 es_ES
dc.description.references Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3d mapping framework based on octrees Autonomous Robots es_ES
dc.description.references Orocos kdl documentation, website. http://www.orocos.org/kdl . Accessed 2016/09/16 es_ES
dc.description.references Ioan A, Şucan MM, Kavraki LE (2012) The open motion planning library, vol 19. http://ompl.kavrakilab.org es_ES
dc.description.references Waibel M, Beetz M, Civera J, D’Andrea R, Elfring J, Galvez-Lopez D, Haussermann K, Janssen R, Montiel JMM, Perzylo A, Schiessle B, Tenorth M, Zweigle O, van de Molengraft R (2011) Roboearth. IEEE Robot Autom Mag 18(2):69–82 es_ES
dc.description.references Simox toolbox. http://simox.sourceforge.net/ . Accessed 2016/09/16 es_ES
dc.description.references Moreels P, Perona P (2007) Evaluation of features detectors and descriptors based on 3d objects. Int J Comput Vis 73:263–284 es_ES
dc.description.references Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1 es_ES
dc.description.references Teuliere C, Marchand E, Eck L (2010) Using multiple hypothesis in model-based tracking. In: 2010 IEEE international conference on robotics and automation (ICRA), pp 4559–4565 es_ES
dc.description.references Moulianitis VC, Dentsoras AJ, Aspragathos NA (1999) A knowledge-based system for the conceptual design of grippers for handling fabrics. Artif Intell Eng Des Anal Manuf 13(1):13–25 es_ES
dc.description.references Davis S, Tsagarakis NG, Caldwell DG (2008) The initial design and manufacturing process of a low cost hand for the robot icub. In: 8th IEEE-RAS international conference on humanoid robots, pp 40–45 es_ES
dc.description.references Cerruti G, Chablat D, Gouaillier D, Sakka S (2017) Design method for an anthropomorphic hand able to gesture and grasp. In: IEEE international conference on robotics and automation. IEEE, pp 3671–3678 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem