Tortajada, S.; Garcia-Gomez, JM.; Vicente, J.; Sanjuán, J.; De Frutos, R.; Martín-Santos, R.; García-Esteve, L.... (2009). Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning. Methods of Information in Medicine. 48(3):291-298. https://doi.org/10.3414/ME0562
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151088
Título:
|
Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning
|
Autor:
|
Tortajada, S.
Garcia-Gomez, Juan M
Vicente, J.
Sanjuán, J.
de Frutos, R.
Martín-Santos, R.
García-Esteve, L.
Gornemann, I.
Gutiérrez-Zotes, A.
Canellas, F.
Carracedo, A.
Gratacos, M.
Guillamat, R.
Baca-García, E.
Robles Viejo, Montserrat
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
|
Fecha difusión:
|
|
Resumen:
|
[EN] Objective: The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a ...[+]
[EN] Objective: The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. Materials and Methods: Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. Results: Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. Conclusions: The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols.
[-]
|
Palabras clave:
|
Multilayer perceptron
,
Neural network
,
Pruning
,
Postpartum depression
|
Derechos de uso:
|
Cerrado |
Fuente:
|
Methods of Information in Medicine. (issn:
0026-1270
)
|
DOI:
|
10.3414/ME0562
|
Editorial:
|
Schattauer GmbH (Methods of Information in Medicine)
|
Versión del editor:
|
https://doi.org/10.3414/ME0562
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/
info:eu-repo/grantAgreement/ISCIII//PIO41635/ES/Vulnerabilidad genético-ambiental a la depresión posparto/
info:eu-repo/grantAgreement/MEC//PTQ05-02-03386/ES/PTQ05-02-03386/
info:eu-repo/grantAgreement/MICINN//PTQ-08-01-06802/ES/PTQ-08-01-06802/
|
Agradecimientos:
|
This work was partially funded by the Spanish Ministerio de Sanidad (PIC41635, Vulnerabilidad genetico-ambiental a la depresion posparto, 2006-2008) and the Instituto de Salud Carlos III (RETICS Combiomed, RD07/0067/2001). ...[+]
This work was partially funded by the Spanish Ministerio de Sanidad (PIC41635, Vulnerabilidad genetico-ambiental a la depresion posparto, 2006-2008) and the Instituto de Salud Carlos III (RETICS Combiomed, RD07/0067/2001). The authors acknowledge to Programa Torres Quevedo from Ministerio de Educacion y Ciencia, co-founded by the European Social Fund (PTQ05-02-03386 and PTQ-08-01-06802)
[-]
|
Tipo:
|
Artículo
|