- -

Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tortajada, S. es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author Vicente, J. es_ES
dc.contributor.author Sanjuán, J. es_ES
dc.contributor.author de Frutos, R. es_ES
dc.contributor.author Martín-Santos, R. es_ES
dc.contributor.author García-Esteve, L. es_ES
dc.contributor.author Gornemann, I. es_ES
dc.contributor.author Gutiérrez-Zotes, A. es_ES
dc.contributor.author Canellas, F. es_ES
dc.contributor.author Carracedo, A. es_ES
dc.contributor.author Gratacos, M. es_ES
dc.contributor.author Guillamat, R. es_ES
dc.contributor.author Baca-García, E. es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.date.accessioned 2020-10-05T06:47:22Z
dc.date.available 2020-10-05T06:47:22Z
dc.date.issued 2009 es_ES
dc.identifier.issn 0026-1270 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151088
dc.description.abstract [EN] Objective: The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. Materials and Methods: Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. Results: Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. Conclusions: The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols. es_ES
dc.description.sponsorship This work was partially funded by the Spanish Ministerio de Sanidad (PIC41635, Vulnerabilidad genetico-ambiental a la depresion posparto, 2006-2008) and the Instituto de Salud Carlos III (RETICS Combiomed, RD07/0067/2001). The authors acknowledge to Programa Torres Quevedo from Ministerio de Educacion y Ciencia, co-founded by the European Social Fund (PTQ05-02-03386 and PTQ-08-01-06802) es_ES
dc.language Inglés es_ES
dc.publisher Schattauer GmbH (Methods of Information in Medicine) es_ES
dc.relation.ispartof Methods of Information in Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multilayer perceptron es_ES
dc.subject Neural network es_ES
dc.subject Pruning es_ES
dc.subject Postpartum depression es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3414/ME0562 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PIO41635/ES/Vulnerabilidad genético-ambiental a la depresión posparto/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//PTQ05-02-03386/ES/PTQ05-02-03386/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PTQ-08-01-06802/ES/PTQ-08-01-06802/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Tortajada, S.; Garcia-Gomez, JM.; Vicente, J.; Sanjuán, J.; De Frutos, R.; Martín-Santos, R.; García-Esteve, L.... (2009). Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning. Methods of Information in Medicine. 48(3):291-298. https://doi.org/10.3414/ME0562 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3414/ME0562 es_ES
dc.description.upvformatpinicio 291 es_ES
dc.description.upvformatpfin 298 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 19387507 es_ES
dc.relation.pasarela S\36124 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Ministerio de Sanidad y Consumo es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Instituto de Salud Carlos III; Fondo de Investigaciones Sanitarias es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem