Mostrar el registro sencillo del ítem
dc.contributor.author | Tortajada, S. | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.contributor.author | Vicente, J. | es_ES |
dc.contributor.author | Sanjuán, J. | es_ES |
dc.contributor.author | de Frutos, R. | es_ES |
dc.contributor.author | Martín-Santos, R. | es_ES |
dc.contributor.author | García-Esteve, L. | es_ES |
dc.contributor.author | Gornemann, I. | es_ES |
dc.contributor.author | Gutiérrez-Zotes, A. | es_ES |
dc.contributor.author | Canellas, F. | es_ES |
dc.contributor.author | Carracedo, A. | es_ES |
dc.contributor.author | Gratacos, M. | es_ES |
dc.contributor.author | Guillamat, R. | es_ES |
dc.contributor.author | Baca-García, E. | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.date.accessioned | 2020-10-05T06:47:22Z | |
dc.date.available | 2020-10-05T06:47:22Z | |
dc.date.issued | 2009 | es_ES |
dc.identifier.issn | 0026-1270 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151088 | |
dc.description.abstract | [EN] Objective: The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. Materials and Methods: Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. Results: Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. Conclusions: The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols. | es_ES |
dc.description.sponsorship | This work was partially funded by the Spanish Ministerio de Sanidad (PIC41635, Vulnerabilidad genetico-ambiental a la depresion posparto, 2006-2008) and the Instituto de Salud Carlos III (RETICS Combiomed, RD07/0067/2001). The authors acknowledge to Programa Torres Quevedo from Ministerio de Educacion y Ciencia, co-founded by the European Social Fund (PTQ05-02-03386 and PTQ-08-01-06802) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Schattauer GmbH (Methods of Information in Medicine) | es_ES |
dc.relation.ispartof | Methods of Information in Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multilayer perceptron | es_ES |
dc.subject | Neural network | es_ES |
dc.subject | Pruning | es_ES |
dc.subject | Postpartum depression | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3414/ME0562 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PIO41635/ES/Vulnerabilidad genético-ambiental a la depresión posparto/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//PTQ05-02-03386/ES/PTQ05-02-03386/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PTQ-08-01-06802/ES/PTQ-08-01-06802/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.description.bibliographicCitation | Tortajada, S.; Garcia-Gomez, JM.; Vicente, J.; Sanjuán, J.; De Frutos, R.; Martín-Santos, R.; García-Esteve, L.... (2009). Prediction of Postpartum Depression Using Multilayer Perceptrons and Pruning. Methods of Information in Medicine. 48(3):291-298. https://doi.org/10.3414/ME0562 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3414/ME0562 | es_ES |
dc.description.upvformatpinicio | 291 | es_ES |
dc.description.upvformatpfin | 298 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 19387507 | es_ES |
dc.relation.pasarela | S\36124 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Ministerio de Sanidad y Consumo | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.contributor.funder | Instituto de Salud Carlos III; Fondo de Investigaciones Sanitarias | es_ES |