- -

Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach

Show full item record

Doménech Carbó, A.; Villegas Broncano, MÁ.; Martínez Ramírez, S.; Domenech Carbo, MT.; Martínez Pla, B. (2016). Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach. Journal of the American Ceramic Society. 99(12):3915-3923. https://doi.org/10.1111/jace.14430

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151089

Files in this item

Item Metadata

Title: Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach
Author: Doménech Carbó, Antonio Villegas Broncano, María Ángeles Martínez Ramírez, Sagrario Domenech Carbo, Mª Teresa Martínez Pla, Betlem
UPV Unit: Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals
Issued date:
Abstract:
[EN] The application of a solid-state electrochemical technique, voltammetry of microparticles (VMP), for studying archeological lead glass is described. Upon attachment to graphite electrodes immersed into aqueous acetate ...[+]
Subjects: Glass , Archaeometry , Voltammetry of microparticles , FIB-FESEM-EDX , Raman spectroscopy
Copyrigths: Reserva de todos los derechos
Source:
Journal of the American Ceramic Society. (issn: 0002-7820 )
DOI: 10.1111/jace.14430
Publisher:
Blackwell Publishing
Publisher version: http://doi.org/10.1111/jace.14430
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2015-65445-C2-2-R/ES/RECUBRIMIENTOS MULTIFUNCIONALES MODIFICADOS CON AGENTES DE RETROALIMENTACION ACTIVA PARA LA PROTECCION DE MATERIALES Y COLECCIONES DEL PATRIMONIO CULTURAL/
info:eu-repo/grantAgreement/CAM//S2013%2FMIT-2914/ES/Tecnologías y conservación de geomateriales del patrimonio/GEOMETARIALES2-CM/
info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/
Thanks:
Financial support from the MINECO Projects CTQ2014-53736-C3-1-P, CTQ2014-53736-C3-2-P and MAT2015-65445-C2-2-R, which are supported with ERDF funds is gratefully acknowledged. Likewise financial support of the Comunidad ...[+]
Type: Artículo

References

Dumbaugh, W. H., & Lapp, J. C. (1992). Heavy-Metal Oxide Glasses. Journal of the American Ceramic Society, 75(9), 2315-2326. doi:10.1111/j.1151-2916.1992.tb05581.x

Kurkjian, C. R., & Prindle, W. R. (2005). Perspectives on the History of Glass Composition. Journal of the American Ceramic Society, 81(4), 795-813. doi:10.1111/j.1151-2916.1998.tb02415.x

MECKING, O. (2012). MEDIEVAL LEAD GLASS IN CENTRAL EUROPE. Archaeometry, 55(4), 640-662. doi:10.1111/j.1475-4754.2012.00697.x [+]
Dumbaugh, W. H., & Lapp, J. C. (1992). Heavy-Metal Oxide Glasses. Journal of the American Ceramic Society, 75(9), 2315-2326. doi:10.1111/j.1151-2916.1992.tb05581.x

Kurkjian, C. R., & Prindle, W. R. (2005). Perspectives on the History of Glass Composition. Journal of the American Ceramic Society, 81(4), 795-813. doi:10.1111/j.1151-2916.1998.tb02415.x

MECKING, O. (2012). MEDIEVAL LEAD GLASS IN CENTRAL EUROPE. Archaeometry, 55(4), 640-662. doi:10.1111/j.1475-4754.2012.00697.x

ARLETTI, R., VEZZALINI, G., FIORI, C., & VANDINI, M. (2011). MOSAIC GLASS FROM ST PETER’S, ROME: MANUFACTURING TECHNIQUES AND RAW MATERIALS EMPLOYED IN LATE 16TH-CENTURY ITALIAN OPAQUE GLASS. Archaeometry, 53(2), 364-386. doi:10.1111/j.1475-4754.2010.00538.x

SCHIBILLE, N., DEGRYSE, P., O’HEA, M., IZMER, A., VANHAECKE, F., & McKENZIE, J. (2012). LATE ROMAN GLASS FROM THE ‘GREAT TEMPLE’ AT PETRA AND KHIRBET ET-TANNUR, JORDAN-TECHNOLOGY AND PROVENANCE. Archaeometry, 54(6), 997-1022. doi:10.1111/j.1475-4754.2012.00660.x

Varberg, J., Gratuze, B., & Kaul, F. (2015). Between Egypt, Mesopotamia and Scandinavia: Late Bronze Age glass beads found in Denmark. Journal of Archaeological Science, 54, 168-181. doi:10.1016/j.jas.2014.11.036

Kunicki-Goldfinger, J. J., Freestone, I. C., McDonald, I., Hobot, J. A., Gilderdale-Scott, H., & Ayers, T. (2014). Technology, production and chronology of red window glass in the medieval period – rediscovery of a lost technology. Journal of Archaeological Science, 41, 89-105. doi:10.1016/j.jas.2013.07.029

Stevenson, C. M., Gleeson, M., & Novak, S. W. (2014). The surface hydration of soda-lime glass and its potential for historic glass dating. Journal of Archaeological Science, 52, 293-299. doi:10.1016/j.jas.2014.08.027

Henderson, J., Evans, J. A., Sloane, H. J., Leng, M. J., & Doherty, C. (2005). The use of oxygen, strontium and lead isotopes to provenance ancient glasses in the Middle East. Journal of Archaeological Science, 32(5), 665-673. doi:10.1016/j.jas.2004.05.008

Nord, A. G., Billström, K., Tronner, K., & Olausson, K. B. (2015). Lead isotope data for provenancing mediaeval pigments in Swedish mural paintings. Journal of Cultural Heritage, 16(6), 856-861. doi:10.1016/j.culher.2015.02.009

SCHIAVON, N., CANDEIAS, A., FERREIRA, T., DA CONCEIÇAO LOPES, M., CARNEIRO, A., CALLIGARO, T., & MIRAO, J. (2012). A COMBINED MULTI-ANALYTICAL APPROACH FOR THE STUDY OF ROMAN GLASS FROM SOUTH-WEST IBERIA: SYNCHROTRON μ-XRF, EXTERNAL-PIXE/PIGE AND BSEM-EDS. Archaeometry, 54(6), 974-996. doi:10.1111/j.1475-4754.2012.00662.x

VERWEIJ, H., & KONIJNENDIJK, W. L. (1976). Structural Units in K2O-PbO-SiO2 Glasses by Raman Spectroscopy. Journal of the American Ceramic Society, 59(11-12), 517-521. doi:10.1111/j.1151-2916.1976.tb09422.x

Morikawa, H., Takagi, Y., & Ohno, H. (1982). Structural analysis of 2PbO·SiO2 glass. Journal of Non-Crystalline Solids, 53(1-2), 173-182. doi:10.1016/0022-3093(82)90027-8

Imaoka, M., Hasegawa, H., & Yasui, I. (1986). X-ray diffraction analysis on the structure of the glasses in the system PbOSiO2. Journal of Non-Crystalline Solids, 85(3), 393-412. doi:10.1016/0022-3093(86)90011-6

Wang, P. W., & Zhang, L. (1996). Structural role of lead in lead silicate glasses derived from XPS spectra. Journal of Non-Crystalline Solids, 194(1-2), 129-134. doi:10.1016/0022-3093(95)00471-8

Takaishi, T., Takahashi, M., Jin, J., Uchino, T., Yoko, T., & Takahashi, M. (2005). Structural Study on PbO-SiO2 Glasses by X-Ray and Neutron Diffraction and 29Si MAS NMR Measurements. Journal of the American Ceramic Society, 88(6), 1591-1596. doi:10.1111/j.1551-2916.2005.00297.x

SANDERS, D. M., & HENCH, L. L. (1973). Mechanisms of Glass Corrosion. Journal of the American Ceramic Society, 56(7), 373-377. doi:10.1111/j.1151-2916.1973.tb12689.x

WOOD, S., & BLACHERE, J. R. (1978). Corrosion of Lead Glasses in Acid Media: I, Leaching Kinetics. Journal of the American Ceramic Society, 61(7-8), 287-292. doi:10.1111/j.1151-2916.1978.tb09310.x

Mizuno, M., Takahashi, M., Takaishi, T., & Yoko, T. (2005). Leaching of Lead and Connectivity of Plumbate Networks in Lead Silicate Glasses. Journal of the American Ceramic Society, 88(10), 2908-2912. doi:10.1111/j.1551-2916.2005.00508.x

Wedepohl, K. H., & Simon, K. (2010). The chemical composition of medieval wood ash glass from Central Europe. Geochemistry, 70(1), 89-97. doi:10.1016/j.chemer.2009.12.006

Janssens, K. (Ed.). (2013). Modern Methods for Analysing Archaeological and Historical Glass. doi:10.1002/9781118314234

Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13

Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3

DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.x

Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q

Doménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9

Doménech-Carbó, A., Sánchez-Ramosa, S., Doménech-Carbó, M. T., Gimeno-Adelantado, J. V., Bosch-Reig, F., Yusá-Marco, D. J., & Saurí-Peris, M. C. (2002). Electrochemical Determination of the Fe(III)/Fe(II) Ratio in Archaeological Ceramic Materials Using Carbon Paste and Composite Electrodes. Electroanalysis, 14(10), 685. doi:10.1002/1521-4109(200205)14:10<685::aid-elan685>3.0.co;2-4

Doménech-Carbó, A., Doménech-Carbó, M. T., Gimeno-Adelantado, J. V., Moya-Moreno, M., & Bosch-Reig, F. (2000). Voltammetric Identification of Lead(II) and (IV) in Mediaeval Glazes in Abrasion-Modified Carbon Paste and Polymer Film Electrodes. Application to the Study of Alterations in Archaeological Ceramic. Electroanalysis, 12(2), 120-127. doi:10.1002/(sici)1521-4109(200002)12:2<120::aid-elan120>3.0.co;2-e

Doménech-Carbó, A., Doménech-Carbó, M. T., & Osete-Cortina, L. (2001). Identification of Manganese(IV) Centers in Archaeological Glass Using Microsample Coatings Attached to PolymerFilm Electrodes. Electroanalysis, 13(11), 927-935. doi:10.1002/1521-4109(200107)13:11<927::aid-elan927>3.0.co;2-9

Doménech-Carbó, A., Doménech-Carbó, M. T., & Mas-Barberá, X. (2007). Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta, 71(4), 1569-1579. doi:10.1016/j.talanta.2006.07.053

SHUGAR, A. N. (2000). BYZANTINE OPAQUE RED GLASS TESSERAE FROM BEIT SHEAN, ISRAEL. Archaeometry, 42(2), 375-384. doi:10.1111/j.1475-4754.2000.tb00888.x

Pavlov, D., & Monakhov, B. (1987). Effect of Sb on the electrochemical properties of Pb/PbSO4/H2SO4 and Pb/PbO/PbSO4/H2SO4 electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 218(1-2), 135-153. doi:10.1016/0022-0728(87)87012-2

Pavlov, D., Monakhov, B., Maja, M., & Penazzi, N. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead‐Acid Battery Positive Plate (Sn‐Free Effect). Journal of The Electrochemical Society, 136(1), 27-33. doi:10.1149/1.2096603

Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2

Komorsky-Lovrić, Š., Lovrić, M., & Bond, A. M. (1992). Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Analytica Chimica Acta, 258(2), 299-305. doi:10.1016/0003-2670(92)85105-f

De Keersmaecker, M., Dowsett, M., Grayburn, R., Banerjee, D., & Adriaens, A. (2015). In-situ spectroelectrochemical characterization of the electrochemical growth and breakdown of a lead dodecanoate coating on a lead substrate. Talanta, 132, 760-768. doi:10.1016/j.talanta.2014.10.035

Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m

Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1

Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7

Hasse, U., Nießen, J., & Scholz, F. (2003). Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometer sized crystals of goethite immobilized on gold electrodes. Journal of Electroanalytical Chemistry, 556, 13-22. doi:10.1016/s0022-0728(03)00316-4

Smets, B. M. J., & Lommen, T. P. A. (1982). The structure of glasses and crystalline compounds in the system PbOSiO2, studied by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 48(2-3), 423-430. doi:10.1016/0022-3093(82)90177-6

Matson, D. W., Sharma, S. K., & Philpotts, J. A. (1983). The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation. Journal of Non-Crystalline Solids, 58(2-3), 323-352. doi:10.1016/0022-3093(83)90032-7

Mysen, B. O., & Frantz, J. D. (1994). Silicate melts at magmatic temperatures: in-situ structure determination to 1651�C and effect of temperature and bulk composition on the mixing behavior of structural units. Contributions to Mineralogy and Petrology, 117(1), 1-14. doi:10.1007/bf00307725

Götz, J., Hoebbel, D., & Wieker, W. (1976). Silicate groupings in glassy and crystalline 2PbO·SiO2. Journal of Non-Crystalline Solids, 20(3), 413-425. doi:10.1016/0022-3093(76)90122-8

Lee, S. K., & Stebbins, J. F. (2003). Nature of Cation Mixing and Ordering in Na-Ca Silicate Glasses and Melts. The Journal of Physical Chemistry B, 107(14), 3141-3148. doi:10.1021/jp027489y

Robinet, L., Bouquillon, A., & Hartwig, J. (2008). Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses. Journal of Raman Spectroscopy, 39(5), 618-626. doi:10.1002/jrs.1894

Colomban, P., & Treppoz, F. (2001). Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. Journal of Raman Spectroscopy, 32(2), 93-102. doi:10.1002/jrs.678

Robinet, L., Coupry, C., Eremin, K., & Hall, C. (2006). The use of Raman spectrometry to predict the stability of historic glasses. Journal of Raman Spectroscopy, 37(7), 789-797. doi:10.1002/jrs.1540

Robinet, L., Coupry, C., Eremin, K., & Hall, C. (2006). Raman investigation of the structural changes during alteration of historic glasses by organic pollutants. Journal of Raman Spectroscopy, 37(11), 1278-1286. doi:10.1002/jrs.1549

Burgio, L., Clark, R. J. H., & Firth, S. (2001). Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. The Analyst, 126(2), 222-227. doi:10.1039/b008302j

Scampicchio, M., Mannino, S., Zima, J., & Wang, J. (2005). Chemometrics on Microchips: Towards the Classification of Wines. Electroanalysis, 17(13), 1215-1221. doi:10.1002/elan.200403236

Zahra, A.-M., Zahra, C. Y., & Piriou, B. (1993). DSC and Raman studies of lead borate and lead silicate glasses. Journal of Non-Crystalline Solids, 155(1), 45-55. doi:10.1016/0022-3093(93)90470-i

Rybicki, J., Rybicka, A., Witkowska, A., Bergmański, G., Di Cicco, A., Minicucci, M., & Mancini, G. (2001). The structure of lead-silicate glasses: molecular dynamics and EXAFS studies. Journal of Physics: Condensed Matter, 13(43), 9781-9797. doi:10.1088/0953-8984/13/43/309

Kohara, S., Ohno, H., Takata, M., Usuki, T., Morita, H., Suzuya, K., … Pusztai, L. (2010). Lead silicate glasses: Binary network-former glasses with large amounts of free volume. Physical Review B, 82(13). doi:10.1103/physrevb.82.134209

Figueiredo, M. O., Silva, T. P., & Veiga, J. P. (2006). A XANES study of the structural role of lead in glazes from decorated tiles, XVI to XVIII century manufacture. Applied Physics A, 83(2), 209-211. doi:10.1007/s00339-006-3509-0

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record