- -

Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Doménech Carbó, Antonio es_ES
dc.contributor.author Villegas Broncano, María Ángeles es_ES
dc.contributor.author Martínez Ramírez, Sagrario es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Martínez Pla, Betlem es_ES
dc.date.accessioned 2020-10-05T06:47:24Z
dc.date.available 2020-10-05T06:47:24Z
dc.date.issued 2016-12 es_ES
dc.identifier.issn 0002-7820 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151089
dc.description.abstract [EN] The application of a solid-state electrochemical technique, voltammetry of microparticles (VMP), for studying archeological lead glass is described. Upon attachment to graphite electrodes immersed into aqueous acetate buffer, characteristic voltammetric profiles were obtained for submicrosamples of archeological glasses dated between the 9th and 19th centuries. Bivariate and multivariate chemometric analyses of the VMP data allowed us to characterize individual workshops/provenances which enabled a clear discrimination between soda-rich and potash-rich glasses. An analysis of the VMP data, combined by XRF, FESEM, AFM and ATR-FTIR and Micro-Raman spectroscopies, denoted the presence of Pb(IV) centers accompanying network-former and network-modifier Pb(II). es_ES
dc.description.sponsorship Financial support from the MINECO Projects CTQ2014-53736-C3-1-P, CTQ2014-53736-C3-2-P and MAT2015-65445-C2-2-R, which are supported with ERDF funds is gratefully acknowledged. Likewise financial support of the Comunidad de Madrid and structural funds of the EU through Programa Geomateriales 2 ref. S2013/MIT-2914 is acknowledged. The authors thank the Seccion de Investigacion Arqueologica Municipal de Valencia for kindly authorizing sampling to carry out this research. The authors also thank Dr. Jose Luis Moya Lopez and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politecnica de Valencia) for their technical support. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of the American Ceramic Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Glass es_ES
dc.subject Archaeometry es_ES
dc.subject Voltammetry of microparticles es_ES
dc.subject FIB-FESEM-EDX es_ES
dc.subject Raman spectroscopy es_ES
dc.subject.classification PINTURA es_ES
dc.title Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/jace.14430 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-65445-C2-2-R/ES/RECUBRIMIENTOS MULTIFUNCIONALES MODIFICADOS CON AGENTES DE RETROALIMENTACION ACTIVA PARA LA PROTECCION DE MATERIALES Y COLECCIONES DEL PATRIMONIO CULTURAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2013%2FMIT-2914/ES/Tecnologías y conservación de geomateriales del patrimonio/GEOMETARIALES2-CM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Doménech Carbó, A.; Villegas Broncano, MÁ.; Martínez Ramírez, S.; Domenech Carbo, MT.; Martínez Pla, B. (2016). Electrochemical fingerprint of archaeological lead silicate glasses from the voltammetry of microparticles approach. Journal of the American Ceramic Society. 99(12):3915-3923. https://doi.org/10.1111/jace.14430 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1111/jace.14430 es_ES
dc.description.upvformatpinicio 3915 es_ES
dc.description.upvformatpfin 3923 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 99 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\326845 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Comunidad de Madrid
dc.description.references Dumbaugh, W. H., & Lapp, J. C. (1992). Heavy-Metal Oxide Glasses. Journal of the American Ceramic Society, 75(9), 2315-2326. doi:10.1111/j.1151-2916.1992.tb05581.x es_ES
dc.description.references Kurkjian, C. R., & Prindle, W. R. (2005). Perspectives on the History of Glass Composition. Journal of the American Ceramic Society, 81(4), 795-813. doi:10.1111/j.1151-2916.1998.tb02415.x es_ES
dc.description.references MECKING, O. (2012). MEDIEVAL LEAD GLASS IN CENTRAL EUROPE. Archaeometry, 55(4), 640-662. doi:10.1111/j.1475-4754.2012.00697.x es_ES
dc.description.references ARLETTI, R., VEZZALINI, G., FIORI, C., & VANDINI, M. (2011). MOSAIC GLASS FROM ST PETER’S, ROME: MANUFACTURING TECHNIQUES AND RAW MATERIALS EMPLOYED IN LATE 16TH-CENTURY ITALIAN OPAQUE GLASS. Archaeometry, 53(2), 364-386. doi:10.1111/j.1475-4754.2010.00538.x es_ES
dc.description.references SCHIBILLE, N., DEGRYSE, P., O’HEA, M., IZMER, A., VANHAECKE, F., & McKENZIE, J. (2012). LATE ROMAN GLASS FROM THE ‘GREAT TEMPLE’ AT PETRA AND KHIRBET ET-TANNUR, JORDAN-TECHNOLOGY AND PROVENANCE. Archaeometry, 54(6), 997-1022. doi:10.1111/j.1475-4754.2012.00660.x es_ES
dc.description.references Varberg, J., Gratuze, B., & Kaul, F. (2015). Between Egypt, Mesopotamia and Scandinavia: Late Bronze Age glass beads found in Denmark. Journal of Archaeological Science, 54, 168-181. doi:10.1016/j.jas.2014.11.036 es_ES
dc.description.references Kunicki-Goldfinger, J. J., Freestone, I. C., McDonald, I., Hobot, J. A., Gilderdale-Scott, H., & Ayers, T. (2014). Technology, production and chronology of red window glass in the medieval period – rediscovery of a lost technology. Journal of Archaeological Science, 41, 89-105. doi:10.1016/j.jas.2013.07.029 es_ES
dc.description.references Stevenson, C. M., Gleeson, M., & Novak, S. W. (2014). The surface hydration of soda-lime glass and its potential for historic glass dating. Journal of Archaeological Science, 52, 293-299. doi:10.1016/j.jas.2014.08.027 es_ES
dc.description.references Henderson, J., Evans, J. A., Sloane, H. J., Leng, M. J., & Doherty, C. (2005). The use of oxygen, strontium and lead isotopes to provenance ancient glasses in the Middle East. Journal of Archaeological Science, 32(5), 665-673. doi:10.1016/j.jas.2004.05.008 es_ES
dc.description.references Nord, A. G., Billström, K., Tronner, K., & Olausson, K. B. (2015). Lead isotope data for provenancing mediaeval pigments in Swedish mural paintings. Journal of Cultural Heritage, 16(6), 856-861. doi:10.1016/j.culher.2015.02.009 es_ES
dc.description.references SCHIAVON, N., CANDEIAS, A., FERREIRA, T., DA CONCEIÇAO LOPES, M., CARNEIRO, A., CALLIGARO, T., & MIRAO, J. (2012). A COMBINED MULTI-ANALYTICAL APPROACH FOR THE STUDY OF ROMAN GLASS FROM SOUTH-WEST IBERIA: SYNCHROTRON μ-XRF, EXTERNAL-PIXE/PIGE AND BSEM-EDS. Archaeometry, 54(6), 974-996. doi:10.1111/j.1475-4754.2012.00662.x es_ES
dc.description.references VERWEIJ, H., & KONIJNENDIJK, W. L. (1976). Structural Units in K2O-PbO-SiO2 Glasses by Raman Spectroscopy. Journal of the American Ceramic Society, 59(11-12), 517-521. doi:10.1111/j.1151-2916.1976.tb09422.x es_ES
dc.description.references Morikawa, H., Takagi, Y., & Ohno, H. (1982). Structural analysis of 2PbO·SiO2 glass. Journal of Non-Crystalline Solids, 53(1-2), 173-182. doi:10.1016/0022-3093(82)90027-8 es_ES
dc.description.references Imaoka, M., Hasegawa, H., & Yasui, I. (1986). X-ray diffraction analysis on the structure of the glasses in the system PbOSiO2. Journal of Non-Crystalline Solids, 85(3), 393-412. doi:10.1016/0022-3093(86)90011-6 es_ES
dc.description.references Wang, P. W., & Zhang, L. (1996). Structural role of lead in lead silicate glasses derived from XPS spectra. Journal of Non-Crystalline Solids, 194(1-2), 129-134. doi:10.1016/0022-3093(95)00471-8 es_ES
dc.description.references Takaishi, T., Takahashi, M., Jin, J., Uchino, T., Yoko, T., & Takahashi, M. (2005). Structural Study on PbO-SiO2 Glasses by X-Ray and Neutron Diffraction and 29Si MAS NMR Measurements. Journal of the American Ceramic Society, 88(6), 1591-1596. doi:10.1111/j.1551-2916.2005.00297.x es_ES
dc.description.references SANDERS, D. M., & HENCH, L. L. (1973). Mechanisms of Glass Corrosion. Journal of the American Ceramic Society, 56(7), 373-377. doi:10.1111/j.1151-2916.1973.tb12689.x es_ES
dc.description.references WOOD, S., & BLACHERE, J. R. (1978). Corrosion of Lead Glasses in Acid Media: I, Leaching Kinetics. Journal of the American Ceramic Society, 61(7-8), 287-292. doi:10.1111/j.1151-2916.1978.tb09310.x es_ES
dc.description.references Mizuno, M., Takahashi, M., Takaishi, T., & Yoko, T. (2005). Leaching of Lead and Connectivity of Plumbate Networks in Lead Silicate Glasses. Journal of the American Ceramic Society, 88(10), 2908-2912. doi:10.1111/j.1551-2916.2005.00508.x es_ES
dc.description.references Wedepohl, K. H., & Simon, K. (2010). The chemical composition of medieval wood ash glass from Central Europe. Geochemistry, 70(1), 89-97. doi:10.1016/j.chemer.2009.12.006 es_ES
dc.description.references Janssens, K. (Ed.). (2013). Modern Methods for Analysing Archaeological and Historical Glass. doi:10.1002/9781118314234 es_ES
dc.description.references Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3 es_ES
dc.description.references DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.x es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9 es_ES
dc.description.references Doménech-Carbó, A., Sánchez-Ramosa, S., Doménech-Carbó, M. T., Gimeno-Adelantado, J. V., Bosch-Reig, F., Yusá-Marco, D. J., & Saurí-Peris, M. C. (2002). Electrochemical Determination of the Fe(III)/Fe(II) Ratio in Archaeological Ceramic Materials Using Carbon Paste and Composite Electrodes. Electroanalysis, 14(10), 685. doi:10.1002/1521-4109(200205)14:10<685::aid-elan685>3.0.co;2-4 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Gimeno-Adelantado, J. V., Moya-Moreno, M., & Bosch-Reig, F. (2000). Voltammetric Identification of Lead(II) and (IV) in Mediaeval Glazes in Abrasion-Modified Carbon Paste and Polymer Film Electrodes. Application to the Study of Alterations in Archaeological Ceramic. Electroanalysis, 12(2), 120-127. doi:10.1002/(sici)1521-4109(200002)12:2<120::aid-elan120>3.0.co;2-e es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Osete-Cortina, L. (2001). Identification of Manganese(IV) Centers in Archaeological Glass Using Microsample Coatings Attached to PolymerFilm Electrodes. Electroanalysis, 13(11), 927-935. doi:10.1002/1521-4109(200107)13:11<927::aid-elan927>3.0.co;2-9 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Mas-Barberá, X. (2007). Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta, 71(4), 1569-1579. doi:10.1016/j.talanta.2006.07.053 es_ES
dc.description.references SHUGAR, A. N. (2000). BYZANTINE OPAQUE RED GLASS TESSERAE FROM BEIT SHEAN, ISRAEL. Archaeometry, 42(2), 375-384. doi:10.1111/j.1475-4754.2000.tb00888.x es_ES
dc.description.references Pavlov, D., & Monakhov, B. (1987). Effect of Sb on the electrochemical properties of Pb/PbSO4/H2SO4 and Pb/PbO/PbSO4/H2SO4 electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 218(1-2), 135-153. doi:10.1016/0022-0728(87)87012-2 es_ES
dc.description.references Pavlov, D., Monakhov, B., Maja, M., & Penazzi, N. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead‐Acid Battery Positive Plate (Sn‐Free Effect). Journal of The Electrochemical Society, 136(1), 27-33. doi:10.1149/1.2096603 es_ES
dc.description.references Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2 es_ES
dc.description.references Komorsky-Lovrić, Š., Lovrić, M., & Bond, A. M. (1992). Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Analytica Chimica Acta, 258(2), 299-305. doi:10.1016/0003-2670(92)85105-f es_ES
dc.description.references De Keersmaecker, M., Dowsett, M., Grayburn, R., Banerjee, D., & Adriaens, A. (2015). In-situ spectroelectrochemical characterization of the electrochemical growth and breakdown of a lead dodecanoate coating on a lead substrate. Talanta, 132, 760-768. doi:10.1016/j.talanta.2014.10.035 es_ES
dc.description.references Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m es_ES
dc.description.references Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1 es_ES
dc.description.references Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7 es_ES
dc.description.references Hasse, U., Nießen, J., & Scholz, F. (2003). Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometer sized crystals of goethite immobilized on gold electrodes. Journal of Electroanalytical Chemistry, 556, 13-22. doi:10.1016/s0022-0728(03)00316-4 es_ES
dc.description.references Smets, B. M. J., & Lommen, T. P. A. (1982). The structure of glasses and crystalline compounds in the system PbOSiO2, studied by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 48(2-3), 423-430. doi:10.1016/0022-3093(82)90177-6 es_ES
dc.description.references Matson, D. W., Sharma, S. K., & Philpotts, J. A. (1983). The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation. Journal of Non-Crystalline Solids, 58(2-3), 323-352. doi:10.1016/0022-3093(83)90032-7 es_ES
dc.description.references Mysen, B. O., & Frantz, J. D. (1994). Silicate melts at magmatic temperatures: in-situ structure determination to 1651�C and effect of temperature and bulk composition on the mixing behavior of structural units. Contributions to Mineralogy and Petrology, 117(1), 1-14. doi:10.1007/bf00307725 es_ES
dc.description.references Götz, J., Hoebbel, D., & Wieker, W. (1976). Silicate groupings in glassy and crystalline 2PbO·SiO2. Journal of Non-Crystalline Solids, 20(3), 413-425. doi:10.1016/0022-3093(76)90122-8 es_ES
dc.description.references Lee, S. K., & Stebbins, J. F. (2003). Nature of Cation Mixing and Ordering in Na-Ca Silicate Glasses and Melts. The Journal of Physical Chemistry B, 107(14), 3141-3148. doi:10.1021/jp027489y es_ES
dc.description.references Robinet, L., Bouquillon, A., & Hartwig, J. (2008). Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses. Journal of Raman Spectroscopy, 39(5), 618-626. doi:10.1002/jrs.1894 es_ES
dc.description.references Colomban, P., & Treppoz, F. (2001). Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. Journal of Raman Spectroscopy, 32(2), 93-102. doi:10.1002/jrs.678 es_ES
dc.description.references Robinet, L., Coupry, C., Eremin, K., & Hall, C. (2006). The use of Raman spectrometry to predict the stability of historic glasses. Journal of Raman Spectroscopy, 37(7), 789-797. doi:10.1002/jrs.1540 es_ES
dc.description.references Robinet, L., Coupry, C., Eremin, K., & Hall, C. (2006). Raman investigation of the structural changes during alteration of historic glasses by organic pollutants. Journal of Raman Spectroscopy, 37(11), 1278-1286. doi:10.1002/jrs.1549 es_ES
dc.description.references Burgio, L., Clark, R. J. H., & Firth, S. (2001). Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. The Analyst, 126(2), 222-227. doi:10.1039/b008302j es_ES
dc.description.references Scampicchio, M., Mannino, S., Zima, J., & Wang, J. (2005). Chemometrics on Microchips: Towards the Classification of Wines. Electroanalysis, 17(13), 1215-1221. doi:10.1002/elan.200403236 es_ES
dc.description.references Zahra, A.-M., Zahra, C. Y., & Piriou, B. (1993). DSC and Raman studies of lead borate and lead silicate glasses. Journal of Non-Crystalline Solids, 155(1), 45-55. doi:10.1016/0022-3093(93)90470-i es_ES
dc.description.references Rybicki, J., Rybicka, A., Witkowska, A., Bergmański, G., Di Cicco, A., Minicucci, M., & Mancini, G. (2001). The structure of lead-silicate glasses: molecular dynamics and EXAFS studies. Journal of Physics: Condensed Matter, 13(43), 9781-9797. doi:10.1088/0953-8984/13/43/309 es_ES
dc.description.references Kohara, S., Ohno, H., Takata, M., Usuki, T., Morita, H., Suzuya, K., … Pusztai, L. (2010). Lead silicate glasses: Binary network-former glasses with large amounts of free volume. Physical Review B, 82(13). doi:10.1103/physrevb.82.134209 es_ES
dc.description.references Figueiredo, M. O., Silva, T. P., & Veiga, J. P. (2006). A XANES study of the structural role of lead in glazes from decorated tiles, XVI to XVIII century manufacture. Applied Physics A, 83(2), 209-211. doi:10.1007/s00339-006-3509-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem