- -

Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase

Show full item record

Pinto, F.; Van Elburg, K.; Pacheco, C.; Lopo, M.; Noirel, J.; Montagud Aquino, A.; Urchueguía Schölzel, JF.... (2012). Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology. 158(2):448-464. https://doi.org/10.1099/mic.0.052282-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151094

Files in this item

Item Metadata

Title: Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase
Author: Pinto, F. Van Elburg, K.A. Pacheco, C.C. Lopo, M. Noirel, J. Montagud Aquino, Arnau Urchueguía Schölzel, Javier Fermín Wright, P.C. Tamagnini, P.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
[EN] Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic ...[+]
Subjects: SPstrain pcc-6803 , Absolute quantitation itraq , Rolling circle mechanism , Cytochrome b(6)f complex , Genome escherichia-coli , Unicellular cyanobacterium , Superoxide-dismutase , Synthetic biology , Oxidative stress , Gene-expression
Copyrigths: Cerrado
Source:
Microbiology. (issn: 1350-0872 )
DOI: 10.1099/mic.0.052282-0
Publisher:
SOC GENERAL MICROBIOLOGY
Publisher version: https://doi.org/10.1099/mic.0.052282-0
Project ID:
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/100370/PT/Regulation and maturation of hydrogenases in cyanobacteria/
...[+]
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/100370/PT/Regulation and maturation of hydrogenases in cyanobacteria/
info:eu-repo/grantAgreement/EC/FP6/43340/EU/Engineered modular bacterial hydrogen photo-production of hydrogen/BIOMODULARH2/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F36378%2F2007/PT/ENGINEERING OF A CYANOBACTERIUM FOR BIOHYDROGEN PRODUCTION: A NEW COMPUTATIONAL ASSISTED DESIGN OF A PHOTOAUTOTROPHIC CHASSIS/
info:eu-repo/grantAgreement/UKRI//EP%2FE036252%2F1/GB/ChELSI: Chemical Engineering Life Science Interface/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F64095%2F2009/PT/MODULES AND CIRCUITS FOR H2 PRODUCTION, A SYNTHETIC BIOLOGY APPROACH USING SYNECHOCYSTIS SP. PCC 6803 AS A PHOTOAUTOTROPHIC CHASSIS/
info:eu-repo/grantAgreement/Generalitat Valenciana//BFPI%2F2007%2F283/ES/BFPI%2F2007%2F283/
info:eu-repo/grantAgreement/MICINN//TIN2009-12359/ES/Integracion De Bases De Datos Biologicas Con Nuevas Herramientas De Computo En Biologia Sintetica Orientadas A La Produccion De Biocombustibles/
[-]
Thanks:
This work was financially supported by EU FP6-NEST-2005-Path-SYN project BioModularH2 (contract no. 043340); Fundacao para a Ciencia e a Tecnologia (SFRH/BD/36378/2007, SFRH/BPD/64095/2009, PTDC/BIA-MIC/100370/2008); ...[+]
Type: Artículo

References

Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12. doi:10.1111/j.1365-2672.2008.03918.x

Agafonov, D. E., Kolb, V. A., & Spirin, A. S. (2001). Ribosome‐associated protein that inhibits translation at the aminoacyl‐tRNA binding stage. EMBO reports, 2(5), 399-402. doi:10.1093/embo-reports/kve091

Ananyev, G., Carrieri, D., & Dismukes, G. C. (2008). Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium «Arthrospira (Spirulina) maxima». Applied and Environmental Microbiology, 74(19), 6102-6113. doi:10.1128/aem.01078-08 [+]
Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12. doi:10.1111/j.1365-2672.2008.03918.x

Agafonov, D. E., Kolb, V. A., & Spirin, A. S. (2001). Ribosome‐associated protein that inhibits translation at the aminoacyl‐tRNA binding stage. EMBO reports, 2(5), 399-402. doi:10.1093/embo-reports/kve091

Ananyev, G., Carrieri, D., & Dismukes, G. C. (2008). Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium «Arthrospira (Spirulina) maxima». Applied and Environmental Microbiology, 74(19), 6102-6113. doi:10.1128/aem.01078-08

Angermayr, S. A., Hellingwerf, K. J., Lindblad, P., & Teixeira de Mattos, M. J. (2009). Energy biotechnology with cyanobacteria. Current Opinion in Biotechnology, 20(3), 257-263. doi:10.1016/j.copbio.2009.05.011

Antal, T. K., & Lindblad, P. (2005). Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology, 98(1), 114-120. doi:10.1111/j.1365-2672.2004.02431.x

ANTAL, T., OLIVEIRA, P., & LINDBLAD, P. (2006). The bidirectional hydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 31(11), 1439-1444. doi:10.1016/j.ijhydene.2006.06.037

Appel, J., & Schulz, R. (1996). Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex 1). Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1298(2), 141-147. doi:10.1016/s0167-4838(96)00176-8

Appel, J., & Schulz, R. (1998). Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry and Photobiology B: Biology, 47(1), 1-11. doi:10.1016/s1011-1344(98)00179-1

Appel, J., Phunpruch, S., & Schulz, R. (s. f.). Hydrogenase(s) in Synechocystis. BioHydrogen, 189-196. doi:10.1007/978-0-585-35132-2_25

Appel, J., Phunpruch, S., Steinmüller, K., & Schulz, R. (2000). The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Archives of Microbiology, 173(5-6), 333-338. doi:10.1007/s002030000139

Barrios-Llerena, M. E. (2006). Shotgun proteomics of cyanobacteria--applications of experimental and data-mining techniques. Briefings in Functional Genomics and Proteomics, 5(2), 121-132. doi:10.1093/bfgp/ell021

Bashor, C. J., Horwitz, A. A., Peisajovich, S. G., & Lim, W. A. (2010). Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems. Annual Review of Biophysics, 39(1), 515-537. doi:10.1146/annurev.biophys.050708.133652

Bhaya, D., Vaulot, D., Amin, P., Takahashi, A. W., & Grossman, A. R. (2000). Isolation of Regulated Genes of the CyanobacteriumSynechocystis sp. Strain PCC 6803 by Differential Display. Journal of Bacteriology, 182(20), 5692-5699. doi:10.1128/jb.182.20.5692-5699.2000

Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiology and Molecular Biology Reviews, 74(4), 529-551. doi:10.1128/mmbr.00033-10

Bothe, H., Tripp, H. J., & Zehr, J. P. (2010). Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Archives of Microbiology, 192(10), 783-790. doi:10.1007/s00203-010-0621-5

Brand, S. N., Tan, X., & Widger, W. R. (1992). Cloning and sequencing of the petBD operon from the cyanobacterium Synechococcus sp. PCC 7002. Plant Molecular Biology, 20(3), 481-491. doi:10.1007/bf00040607

Burja, A. M., Banaigs, B., Abou-Mansour, E., Grant Burgess, J., & Wright, P. C. (2001). Marine cyanobacteria—a prolific source of natural products. Tetrahedron, 57(46), 9347-9377. doi:10.1016/s0040-4020(01)00931-0

Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., & Maness, P.-C. (2011). The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technology, 102(18), 8368-8377. doi:10.1016/j.biortech.2011.03.103

Chong, P. K., Gan, C. S., Pham, T. K., & Wright, P. C. (2006). Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Reproducibility:  Implication of Multiple Injections. Journal of Proteome Research, 5(5), 1232-1240. doi:10.1021/pr060018u

COURNAC, L. (2002). Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. International Journal of Hydrogen Energy, 27(11-12), 1229-1237. doi:10.1016/s0360-3199(02)00105-2

Cournac, L., Guedeney, G., Peltier, G., & Vignais, P. M. (2004). Sustained Photoevolution of Molecular Hydrogen in a Mutant of Synechocystis sp. Strain PCC 6803 Deficient in the Type I NADPH-Dehydrogenase Complex. Journal of Bacteriology, 186(6), 1737-1746. doi:10.1128/jb.186.6.1737-1746.2003

Cramer, W. A., Martinez, S. E., Furbacher, P. N., Huang, D., & Smith, J. L. (1994). The cytochrome b6f complex. Current Opinion in Structural Biology, 4(4), 536-544. doi:10.1016/s0959-440x(94)90216-x

Dembitsky, V. M. (2006). Anticancer activity of natural and synthetic acetylenic lipids. Lipids, 41(10), 883-924. doi:10.1007/s11745-006-5044-3

Devillers, J., Doré, J. C., Guyot, M., Poroikov, V., Gloriozova, T., Lagunin, A., & Filimonov, D. (2007). Prediction of biological activity profiles of cyanobacterial secondary metabolites. SAR and QSAR in Environmental Research, 18(7-8), 629-643. doi:10.1080/10629360701698704

Dubrac, S., & Touati, D. (2000). Fur Positive Regulation of Iron Superoxide Dismutase in Escherichia coli: Functional Analysis of thesodB Promoter. Journal of Bacteriology, 182(13), 3802-3808. doi:10.1128/jb.182.13.3802-3808.2000

Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207-214. doi:10.1038/nmeth1019

Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342

Fernández de Henestrosa, A. R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J. J., Ohmori, H., & Woodgate, R. (2002). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Molecular Microbiology, 35(6), 1560-1572. doi:10.1046/j.1365-2958.2000.01826.x

Ferreira, D., Pinto, F., Moradas-Ferreira, P., Mendes, M. V., & Tamagnini, P. (2009). Transcription profiles of hydrogenases related genes in the cyanobacterium Lyngbya majuscula CCAP 1446/4. BMC Microbiology, 9(1), 67. doi:10.1186/1471-2180-9-67

Gan, C. S., Reardon, K. F., & Wright, P. C. (2005). Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis ofSynechocystis sp. PCC 6803. PROTEOMICS, 5(9), 2468-2478. doi:10.1002/pmic.200401266

Gan, C. S., Chong, P. K., Pham, T. K., & Wright, P. C. (2007). Technical, Experimental, and Biological Variations in Isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Journal of Proteome Research, 6(2), 821-827. doi:10.1021/pr060474i

Gómez-Garcı́a, M. R., Losada, M., & Serrano, A. (2003). Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochemical and Biophysical Research Communications, 302(3), 601-609. doi:10.1016/s0006-291x(03)00162-1

Gutekunst, K., Phunpruch, S., Schwarz, C., Schuchardt, S., Schulz-Friedrich, R., & Appel, J. (2005). LexA regulates the bidirectional hydrogenase in the cyanobacteriumSynechocystissp. PCC 6803 as a transcription activator. Molecular Microbiology, 58(3), 810-823. doi:10.1111/j.1365-2958.2005.04867.x

Gutthann, F., Egert, M., Marques, A., & Appel, J. (2007). Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767(2), 161-169. doi:10.1016/j.bbabio.2006.12.003

Hall, H. K., & Foster, J. W. (1996). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. Journal of bacteriology, 178(19), 5683-5691. doi:10.1128/jb.178.19.5683-5691.1996

Hihara, Y., Muramatsu, M., Nakamura, K., & Sonoike, K. (2004). A cyanobacterial gene encoding an ortholog of Pirin is induced under stress conditions. FEBS Letters, 574(1-3), 101-105. doi:10.1016/j.febslet.2004.06.102

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36(Web Server), W5-W9. doi:10.1093/nar/gkn201

Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., … Tabata, S. (1996). Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions. DNA Research, 3(3), 109-136. doi:10.1093/dnares/3.3.109

Kaneko, T. (2003). Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium, Synechocystis sp. PCC 6803. DNA Research, 10(5), 221-228. doi:10.1093/dnares/10.5.221

Kawakami, K., Iwai, M., Ikeuchi, M., Kamiya, N., & Shen, J.-R. (2007). Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography. FEBS Letters, 581(25), 4983-4987. doi:10.1016/j.febslet.2007.09.036

Keasling, J. D. (2008). Synthetic Biology for Synthetic Chemistry. ACS Chemical Biology, 3(1), 64-76. doi:10.1021/cb7002434

Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775

Kim, J.-H., & Suh, K. H. (2005). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Archives of Microbiology, 183(3), 218-223. doi:10.1007/s00203-005-0766-9

Kiss, É., Kós, P. B., & Vass, I. (2009). Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803. Journal of Biotechnology, 142(1), 31-37. doi:10.1016/j.jbiotec.2009.02.007

Kobayashi, M., Ishizuka, T., Katayama, M., Kanehisa, M., Bhattacharyya-Pakrasi, M., Pakrasi, H. B., & Ikeuchi, M. (2004). Response to Oxidative Stress Involves a Novel Peroxiredoxin Gene in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 45(3), 290-299. doi:10.1093/pcp/pch034

Wolk, O. K., C. (2002). Genetic tools for cyanobacteria. Applied Microbiology and Biotechnology, 58(2), 123-137. doi:10.1007/s00253-001-0864-9

KRENN, B. E., STROTMANN, H., WALRAVEN, H. S. V., SCHOLTS, M. J. C., & KRAAYENHOF, R. (1997). The ATP synthase γ subunit provides the primary site of activation of the chloroplast enzyme: experiments with a chloroplast-like Synechocystis 6803 mutant. Biochemical Journal, 323(3), 841-845. doi:10.1042/bj3230841

Kruip, J., Nixon, P. J., Osiewacz, H. D., & Rögner, M. (1994). Nucleotide sequence of the petB gene encoding cytochrome b6 from the mesophilic cyanobacterium Synechocystis PCC 6803: implications for evolution and function. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1188(3), 443-446. doi:10.1016/0005-2728(94)90068-x

Kunert, A., Vinnemeier, J., Erdmann, N., & Hagemann, M. (2003). Repression by Fur is not the main mechanism controlling the iron-inducibleisiABoperon in the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 227(2), 255-262. doi:10.1016/s0378-1097(03)00689-x

LEITAO, E., PEREIRA, S., BONDOSO, J., FERREIRA, D., PINTO, F., MORADASFERREIRA, P., & TAMAGNINI, P. (2006). Genes involved in the maturation of hydrogenase(s) in the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4. International Journal of Hydrogen Energy, 31(11), 1469-1477. doi:10.1016/j.ijhydene.2006.06.012

Li, H., Singh, A. K., McIntyre, L. M., & Sherman, L. A. (2004). Differential Gene Expression in Response to Hydrogen Peroxide and the Putative PerR Regulon of Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 186(11), 3331-3345. doi:10.1128/jb.186.11.3331-3345.2004

Li, S., Xu, M., & Su, Z. (2010). Computational analysis of LexA regulons in Cyanobacteria. BMC Genomics, 11(1), 527. doi:10.1186/1471-2164-11-527

Lindahl, M., & Florencio, F. J. (2003). Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proceedings of the National Academy of Sciences, 100(26), 16107-16112. doi:10.1073/pnas.2534397100

Little, J. W., & Mount, D. W. (1982). The SOS regulatory system of Escherichia coli. Cell, 29(1), 11-22. doi:10.1016/0092-8674(82)90085-x

Ludwig, M., Schulz-Friedrich, R., & Appel, J. (2006). Occurrence of Hydrogenases in Cyanobacteria and Anoxygenic Photosynthetic Bacteria: Implications for the Phylogenetic Origin of Cyanobacterial and Algal Hydrogenases. Journal of Molecular Evolution, 63(6), 758-768. doi:10.1007/s00239-006-0001-6

Masukawa, M. Mochimaru, H. Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618-624. doi:10.1007/s00253-002-0934-7

McIntosh, C. L., Germer, F., Schulz, R., Appel, J., & Jones, A. K. (2011). The [NiFe]-Hydrogenase of the CyanobacteriumSynechocystissp. PCC 6803 Works Bidirectionally with a Bias to H2Production. Journal of the American Chemical Society, 133(29), 11308-11319. doi:10.1021/ja203376y

McNeely, K., Xu, Y., Bennette, N., Bryant, D. A., & Dismukes, G. C. (2010). Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Applied and Environmental Microbiology, 76(15), 5032-5038. doi:10.1128/aem.00862-10

Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A., … Zehr, J. P. (2010). Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain. Science, 327(5972), 1512-1514. doi:10.1126/science.1185468

Motohashi, K., Kondoh, A., Stumpp, M. T., & Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences, 98(20), 11224-11229. doi:10.1073/pnas.191282098

Nakamura, Y. (2000). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Research, 28(1), 72-72. doi:10.1093/nar/28.1.72

Navarro, F., Martín-Figueroa, E., & Florencio, F. J. (2000). Plant Molecular Biology, 43(1), 23-32. doi:10.1023/a:1006472018601

Nefedova, L. N. (2003). Russian Journal of Genetics, 39(4), 386-389. doi:10.1023/a:1023349412798

Noirel, J., Sanguinetti, G., & Wright, P. C. (2008). Identifying differentially expressed subnetworks with MMG. Bioinformatics, 24(23), 2792-2793. doi:10.1093/bioinformatics/btn499

Noirel, J., Ow, S. Y., Sanguinetti, G., & Wright, P. C. (2009). Systems biology meets synthetic biology: a case study of the metabolic effects of synthetic rewiring. Molecular BioSystems, 5(10), 1214. doi:10.1039/b904729h

Noirel, J., Evans, C., Salim, M., Mukherjee, J., Yen Ow, S., Pandhal, J., … C. Wright, P. (2011). Methods in Quantitative Proteomics: Setting iTRAQ on the Right Track. Current Proteomics, 8(1), 17-30. doi:10.2174/157016411794697408

Nunoshiba, T., Obata, F., Boss, A. C., Oikawa, S., Mori, T., Kawanishi, S., & Yamamoto, K. (1999). Role of Iron and Superoxide for Generation of Hydroxyl Radical, Oxidative DNA Lesions, and Mutagenesis inEscherichia coli. Journal of Biological Chemistry, 274(49), 34832-34837. doi:10.1074/jbc.274.49.34832

Oliveira, P., & Lindblad, P. (2005). LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 251(1), 59-66. doi:10.1016/j.femsle.2005.07.024

Oliveira, P., & Lindblad, P. (2007). An AbrB-Like Protein Regulates the Expression of the Bidirectional Hydrogenase in Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 190(3), 1011-1019. doi:10.1128/jb.01605-07

Oliveira, P., & Lindblad, P. (2009). Transcriptional regulation of the cyanobacterial bidirectional Hox-hydrogenase. Dalton Transactions, (45), 9990. doi:10.1039/b908593a

Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, H., Asayama, M., Shirai, M., … Tanaka, K. (2005). Positive Regulation of Sugar Catabolic Pathways in the CyanobacteriumSynechocystissp. PCC 6803 by the Group 2 σ Factor SigE. Journal of Biological Chemistry, 280(35), 30653-30659. doi:10.1074/jbc.m505043200

Ow, S. Y., & Wright, P. C. (2009). Current trends in high throughput proteomics in cyanobacteria. FEBS Letters, 583(11), 1744-1752. doi:10.1016/j.febslet.2009.03.062

Ow, S. Y., Salim, M., Noirel, J., Evans, C., Rehman, I., & Wright, P. C. (2009). iTRAQ Underestimation in Simple and Complex Mixtures: «The Good, the Bad and the Ugly». Journal of Proteome Research, 8(11), 5347-5355. doi:10.1021/pr900634c

Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1717(2), 67-88. doi:10.1016/j.bbamem.2005.09.010

Patterson-Fortin, L. M. (2006). A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Research, 34(12), 3446-3454. doi:10.1093/nar/gkl426

Pérez-Pérez, M. E., Martín-Figueroa, E., & Florencio, F. J. (2009). Photosynthetic Regulation of the Cyanobacterium Synechocystis sp. PCC 6803 Thioredoxin System and Functional Analysis of TrxB (Trx x) and TrxQ (Trx y) Thioredoxins. Molecular Plant, 2(2), 270-283. doi:10.1093/mp/ssn070

Pham, T. K., Roy, S., Noirel, J., Douglas, I., Wright, P. C., & Stafford, G. P. (2010). A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia. PROTEOMICS, 10(17), 3130-3141. doi:10.1002/pmic.200900448

Posfai, G. (2006). Emergent Properties of Reduced-Genome Escherichia coli. Science, 312(5776), 1044-1046. doi:10.1126/science.1126439

Reidegeld, K. A., Eisenacher, M., Kohl, M., Chamrad, D., Körting, G., Blüggel, M., … Stephan, C. (2008). An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. PROTEOMICS, 8(6), 1129-1137. doi:10.1002/pmic.200701073

Sakthivel, K., Watanabe, T., & Nakamoto, H. (2009). A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Archives of Microbiology, 191(4), 319-328. doi:10.1007/s00203-009-0457-z

Sanguinetti, G., Noirel, J., & Wright, P. C. (2008). MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics, 24(8), 1078-1084. doi:10.1093/bioinformatics/btn066

Sato, S., Shimoda, Y., Muraki, A., Kohara, M., Nakamura, Y., & Tabata, S. (2007). A Large-scale Protein–protein Interaction Analysis in Synechocystis sp. PCC6803. DNA Research, 14(5), 207-216. doi:10.1093/dnares/dsm021

Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145(1), 69-73. doi:10.1016/0378-1119(94)90324-7

Schmitt, W. A., & Stephanopoulos, G. (2003). Prediction of transcriptional profiles ofSynechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnology and Bioengineering, 84(7), 855-863. doi:10.1002/bit.10843

Schmitz, O., & Bothe, H. (1996). The diaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften, 83(11), 525-527. doi:10.1007/bf01141957

Sch�tz, K., Happe, T., Troshina, O., Lindblad, P., Leit�o, E., Oliveira, P., & Tamagnini, P. (2004). Cyanobacterial H2 production ? a comparative analysis. Planta, 218(3), 350-359. doi:10.1007/s00425-003-1113-5

Sharma, S. S., Blattner, F. R., & Harcum, S. W. (2007). Recombinant protein production in an Escherichia coli reduced genome strain. Metabolic Engineering, 9(2), 133-141. doi:10.1016/j.ymben.2006.10.002

Sharma, S. S., Campbell, J. W., Frisch, D., Blattner, F. R., & Harcum, S. W. (2007). Expression of two recombinant chloramphenicol acetyltransferase variants in highly reduced genomeEscherichia coli strains. Biotechnology and Bioengineering, 98(5), 1056-1070. doi:10.1002/bit.21491

Shcolnick, S., Summerfield, T. C., Reytman, L., Sherman, L. A., & Keren, N. (2009). The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 and Its Relationship to Oxidative Stress. Plant Physiology, 150(4), 2045-2056. doi:10.1104/pp.109.141853

Sherman, D. M., Troyan, T. A., & Sherman, L. A. (1994). Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes). Plant Physiology, 106(1), 251-262. doi:10.1104/pp.106.1.251

Sjöholm, J., Oliveira, P., & Lindblad, P. (2007). Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120. Applied and Environmental Microbiology, 73(17), 5435-5446. doi:10.1128/aem.00756-07

Stal, L. (1997). Fermentation in cyanobacteria. FEMS Microbiology Reviews, 21(2), 179-211. doi:10.1016/s0168-6445(97)00056-9

Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171-205. doi:10.1128/mmbr.35.2.171-205.1971

Stroebel, D., Choquet, Y., Popot, J.-L., & Picot, D. (2003). An atypical haem in the cytochrome b6f complex. Nature, 426(6965), 413-418. doi:10.1038/nature02155

Summerfield, T. C., & Sherman, L. A. (2008). Global Transcriptional Response of the Alkali-Tolerant Cyanobacterium Synechocystis sp. Strain PCC 6803 to a pH 10 Environment. Applied and Environmental Microbiology, 74(17), 5276-5284. doi:10.1128/aem.00883-08

Summerfield, T. C., Nagarajan, S., & Sherman, L. A. (2011). Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. Microbiology, 157(2), 301-312. doi:10.1099/mic.0.041053-0

Suzuki, I. (2006). The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. Journal of Experimental Botany, 57(7), 1573-1578. doi:10.1093/jxb/erj148

Tamagnini, P., Troshina, O., Oxelfelt, F., Salema, R., & Lindblad, P. (1997). Hydrogenases in Nostoc sp. Strain PCC 73102, a Strain Lacking a Bidirectional Enzyme. Applied and environmental microbiology, 63(5), 1801-1807. doi:10.1128/aem.63.5.1801-1807.1997

Tamagnini, P., Costa, J.-L., Almeida, L., Oliveira, M.-J., Salema, R., & Lindblad, P. (2000). Diversity of Cyanobacterial Hydrogenases, a Molecular Approach. Current Microbiology, 40(6), 356-361. doi:10.1007/s002840010070

Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and Hydrogen Metabolism of Cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1-20. doi:10.1128/mmbr.66.1.1-20.2002

Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. J., … Lindblad, P. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiology Reviews, 31(6), 692-720. doi:10.1111/j.1574-6976.2007.00085.x

TROSHINA, O. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11-12), 1283-1289. doi:10.1016/s0360-3199(02)00103-9

Ushimaru, T., Nishiyama, Y., Hayashi, H., & Murata, N. (2002). No coordinated transcriptional regulation of the sod-kat antioxidative system in Synechocystis sp. PCC 6803. Journal of Plant Physiology, 159(7), 805-807. doi:10.1078/0176-1617-0812

Van der Oost, J., Bulthuis, B. A., Feitz, S., Krab, K., & Kraayenhof, R. (1989). Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Archives of Microbiology, 152(5), 415-419. doi:10.1007/bf00446921

Vila-Sanjurjo, A., Schuwirth, B.-S., Hau, C. W., & Cate, J. H. D. (2004). Structural basis for the control of translation initiation during stress. Nature Structural & Molecular Biology, 11(11), 1054-1059. doi:10.1038/nsmb850

Vinnemeier, J., Kunert, A., & Hagemann, M. (1998). Transcriptional analysis of theisiABoperon in salt-stressed cells of the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 169(2), 323-330. doi:10.1111/j.1574-6968.1998.tb13336.x

Williams, J. G. K. (1988). [85] Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Cyanobacteria, 766-778. doi:10.1016/0076-6879(88)67088-1

Xu, W., & McFadden, B. A. (1997). Sequence Analysis of Plasmid pCC5.2 from CyanobacteriumSynechocystisPCC 6803 That Replicates by a Rolling Circle Mechanism. Plasmid, 37(2), 95-104. doi:10.1006/plas.1997.1281

Yadav, V. G., & Stephanopoulos, G. (2010). Reevaluating synthesis by biology. Current Opinion in Microbiology, 13(3), 371-376. doi:10.1016/j.mib.2010.04.002

Yang, X., & McFadden, B. A. (1993). A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism. Journal of Bacteriology, 175(13), 3981-3991. doi:10.1128/jb.175.13.3981-3991.1993

Yang, X., & McFadden, B. A. (1994). The Complete DNA Sequence and Replication Analysis of the Plasmid pCB2.4 from the Cyanobacterium Synechocystis PCC 6803. Plasmid, 31(2), 131-137. doi:10.1006/plas.1994.1014

Zhang, Z., Pendse, N. D., Phillips, K. N., Cotner, J. B., & Khodursky, A. (2008). Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics, 9(1), 344. doi:10.1186/1471-2164-9-344

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record