Mostrar el registro sencillo del ítem
dc.contributor.author | Pinto, F. | es_ES |
dc.contributor.author | Van Elburg, K.A. | es_ES |
dc.contributor.author | Pacheco, C.C. | es_ES |
dc.contributor.author | Lopo, M. | es_ES |
dc.contributor.author | Noirel, J. | es_ES |
dc.contributor.author | Montagud Aquino, Arnau | es_ES |
dc.contributor.author | Urchueguía Schölzel, Javier Fermín | es_ES |
dc.contributor.author | Wright, P.C. | es_ES |
dc.contributor.author | Tamagnini, P. | es_ES |
dc.date.accessioned | 2020-10-05T06:59:57Z | |
dc.date.available | 2020-10-05T06:59:57Z | |
dc.date.issued | 2012-02-01 | es_ES |
dc.identifier.issn | 1350-0872 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151094 | |
dc.description.abstract | [EN] Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic manipulation. The unicellular non-nitrogen-fixing Synechocystis sp. PCC 6803 is the best studied cyanobacterial strain and its genome was the first to be sequenced. The vast amount of physiological and molecular data available, together with a relatively small genome, makes Synechocystis suitable for computational metabolic modelling and to be used as a photoautotrophic chassis in synthetic biology applications. To prepare it for the introduction of a synthetic hydrogen producing device, a Synechocystis sp. PCC 6803 deletion mutant lacking an active bidirectional hydrogenase (Delta hoxYH) was produced and characterized at different levels: physiological, proteomic and transcriptional. The results showed that, under conditions favouring hydrogenase activity, 17 of the 210 identified proteins had significant differential fold changes in comparisons of the mutant with the wild-type. Most of these proteins are related to the redox and energy state of the cell. Transcriptional studies revealed that only six genes encoding those proteins exhibited significant differences in transcript levels. Moreover, the mutant exhibits similar growth behaviour compared with the wild-type, reflecting Synechocystis plasticity and metabolic adaptability. Overall, this study reveals that the Synechocystis Delta hoxYH mutant is robust and can be used as a photoautotrophic chassis for the integration of synthetic constructs, i.e. molecular constructs assembled from well characterized biological and/or synthetic parts (e.g. promoters, regulators, coding regions, terminators) designed for a specific purpose. | es_ES |
dc.description.sponsorship | This work was financially supported by EU FP6-NEST-2005-Path-SYN project BioModularH2 (contract no. 043340); Fundacao para a Ciencia e a Tecnologia (SFRH/BD/36378/2007, SFRH/BPD/64095/2009, PTDC/BIA-MIC/100370/2008); European Science Foundation (III Quadro Comunitario de Apoio), COMPETE - Programa Operacional Eactores de Competitividade na sua componente FEDER; Accoes Integradas Luso-Britanicas, Treaty of Windsor Programme 2010-11 (Processo B18/10); Engineering and Physical Sciences Research Council (EP/E036252/1), under the ChELSI initiative; Generalitat Valenciana grant BFPI/2007/283; and MICINN project ArtBioCom (TIN2009-12359). The authors are grateful to Dr Alan Dunbar (Chemical and Biological Engineering, University of Sheffield) and Dr Saw Ow Yen (Chemical and Biological Engineering, University of Sheffield) for helpful discussion. The authors would also like to thank the 'National BioResource Project (NIG, Japan): E. coli for providing the plasmid pK18mobsacB. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SOC GENERAL MICROBIOLOGY | es_ES |
dc.relation.ispartof | Microbiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SPstrain pcc-6803 | es_ES |
dc.subject | Absolute quantitation itraq | es_ES |
dc.subject | Rolling circle mechanism | es_ES |
dc.subject | Cytochrome b(6)f complex | es_ES |
dc.subject | Genome escherichia-coli | es_ES |
dc.subject | Unicellular cyanobacterium | es_ES |
dc.subject | Superoxide-dismutase | es_ES |
dc.subject | Synthetic biology | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Gene-expression | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1099/mic.0.052282-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/100370/PT/Regulation and maturation of hydrogenases in cyanobacteria/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/43340/EU/Engineered modular bacterial hydrogen photo-production of hydrogen/BIOMODULARH2/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F36378%2F2007/PT/ENGINEERING OF A CYANOBACTERIUM FOR BIOHYDROGEN PRODUCTION: A NEW COMPUTATIONAL ASSISTED DESIGN OF A PHOTOAUTOTROPHIC CHASSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FE036252%2F1/GB/ChELSI: Chemical Engineering Life Science Interface/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F64095%2F2009/PT/MODULES AND CIRCUITS FOR H2 PRODUCTION, A SYNTHETIC BIOLOGY APPROACH USING SYNECHOCYSTIS SP. PCC 6803 AS A PHOTOAUTOTROPHIC CHASSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//BFPI%2F2007%2F283/ES/BFPI%2F2007%2F283/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-12359/ES/Integracion De Bases De Datos Biologicas Con Nuevas Herramientas De Computo En Biologia Sintetica Orientadas A La Produccion De Biocombustibles/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Pinto, F.; Van Elburg, K.; Pacheco, C.; Lopo, M.; Noirel, J.; Montagud Aquino, A.; Urchueguía Schölzel, JF.... (2012). Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology. 158(2):448-464. https://doi.org/10.1099/mic.0.052282-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1099/mic.0.052282-0 | es_ES |
dc.description.upvformatpinicio | 448 | es_ES |
dc.description.upvformatpfin | 464 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 158 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 22096147 | es_ES |
dc.relation.pasarela | S\240620 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Science Foundation | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia e Innovación | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12. doi:10.1111/j.1365-2672.2008.03918.x | es_ES |
dc.description.references | Agafonov, D. E., Kolb, V. A., & Spirin, A. S. (2001). Ribosome‐associated protein that inhibits translation at the aminoacyl‐tRNA binding stage. EMBO reports, 2(5), 399-402. doi:10.1093/embo-reports/kve091 | es_ES |
dc.description.references | Ananyev, G., Carrieri, D., & Dismukes, G. C. (2008). Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium «Arthrospira (Spirulina) maxima». Applied and Environmental Microbiology, 74(19), 6102-6113. doi:10.1128/aem.01078-08 | es_ES |
dc.description.references | Angermayr, S. A., Hellingwerf, K. J., Lindblad, P., & Teixeira de Mattos, M. J. (2009). Energy biotechnology with cyanobacteria. Current Opinion in Biotechnology, 20(3), 257-263. doi:10.1016/j.copbio.2009.05.011 | es_ES |
dc.description.references | Antal, T. K., & Lindblad, P. (2005). Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology, 98(1), 114-120. doi:10.1111/j.1365-2672.2004.02431.x | es_ES |
dc.description.references | ANTAL, T., OLIVEIRA, P., & LINDBLAD, P. (2006). The bidirectional hydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 31(11), 1439-1444. doi:10.1016/j.ijhydene.2006.06.037 | es_ES |
dc.description.references | Appel, J., & Schulz, R. (1996). Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex 1). Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1298(2), 141-147. doi:10.1016/s0167-4838(96)00176-8 | es_ES |
dc.description.references | Appel, J., & Schulz, R. (1998). Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry and Photobiology B: Biology, 47(1), 1-11. doi:10.1016/s1011-1344(98)00179-1 | es_ES |
dc.description.references | Appel, J., Phunpruch, S., & Schulz, R. (s. f.). Hydrogenase(s) in Synechocystis. BioHydrogen, 189-196. doi:10.1007/978-0-585-35132-2_25 | es_ES |
dc.description.references | Appel, J., Phunpruch, S., Steinmüller, K., & Schulz, R. (2000). The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Archives of Microbiology, 173(5-6), 333-338. doi:10.1007/s002030000139 | es_ES |
dc.description.references | Barrios-Llerena, M. E. (2006). Shotgun proteomics of cyanobacteria--applications of experimental and data-mining techniques. Briefings in Functional Genomics and Proteomics, 5(2), 121-132. doi:10.1093/bfgp/ell021 | es_ES |
dc.description.references | Bashor, C. J., Horwitz, A. A., Peisajovich, S. G., & Lim, W. A. (2010). Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems. Annual Review of Biophysics, 39(1), 515-537. doi:10.1146/annurev.biophys.050708.133652 | es_ES |
dc.description.references | Bhaya, D., Vaulot, D., Amin, P., Takahashi, A. W., & Grossman, A. R. (2000). Isolation of Regulated Genes of the CyanobacteriumSynechocystis sp. Strain PCC 6803 by Differential Display. Journal of Bacteriology, 182(20), 5692-5699. doi:10.1128/jb.182.20.5692-5699.2000 | es_ES |
dc.description.references | Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiology and Molecular Biology Reviews, 74(4), 529-551. doi:10.1128/mmbr.00033-10 | es_ES |
dc.description.references | Bothe, H., Tripp, H. J., & Zehr, J. P. (2010). Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Archives of Microbiology, 192(10), 783-790. doi:10.1007/s00203-010-0621-5 | es_ES |
dc.description.references | Brand, S. N., Tan, X., & Widger, W. R. (1992). Cloning and sequencing of the petBD operon from the cyanobacterium Synechococcus sp. PCC 7002. Plant Molecular Biology, 20(3), 481-491. doi:10.1007/bf00040607 | es_ES |
dc.description.references | Burja, A. M., Banaigs, B., Abou-Mansour, E., Grant Burgess, J., & Wright, P. C. (2001). Marine cyanobacteria—a prolific source of natural products. Tetrahedron, 57(46), 9347-9377. doi:10.1016/s0040-4020(01)00931-0 | es_ES |
dc.description.references | Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., & Maness, P.-C. (2011). The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technology, 102(18), 8368-8377. doi:10.1016/j.biortech.2011.03.103 | es_ES |
dc.description.references | Chong, P. K., Gan, C. S., Pham, T. K., & Wright, P. C. (2006). Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Reproducibility: Implication of Multiple Injections. Journal of Proteome Research, 5(5), 1232-1240. doi:10.1021/pr060018u | es_ES |
dc.description.references | COURNAC, L. (2002). Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. International Journal of Hydrogen Energy, 27(11-12), 1229-1237. doi:10.1016/s0360-3199(02)00105-2 | es_ES |
dc.description.references | Cournac, L., Guedeney, G., Peltier, G., & Vignais, P. M. (2004). Sustained Photoevolution of Molecular Hydrogen in a Mutant of Synechocystis sp. Strain PCC 6803 Deficient in the Type I NADPH-Dehydrogenase Complex. Journal of Bacteriology, 186(6), 1737-1746. doi:10.1128/jb.186.6.1737-1746.2003 | es_ES |
dc.description.references | Cramer, W. A., Martinez, S. E., Furbacher, P. N., Huang, D., & Smith, J. L. (1994). The cytochrome b6f complex. Current Opinion in Structural Biology, 4(4), 536-544. doi:10.1016/s0959-440x(94)90216-x | es_ES |
dc.description.references | Dembitsky, V. M. (2006). Anticancer activity of natural and synthetic acetylenic lipids. Lipids, 41(10), 883-924. doi:10.1007/s11745-006-5044-3 | es_ES |
dc.description.references | Devillers, J., Doré, J. C., Guyot, M., Poroikov, V., Gloriozova, T., Lagunin, A., & Filimonov, D. (2007). Prediction of biological activity profiles of cyanobacterial secondary metabolites. SAR and QSAR in Environmental Research, 18(7-8), 629-643. doi:10.1080/10629360701698704 | es_ES |
dc.description.references | Dubrac, S., & Touati, D. (2000). Fur Positive Regulation of Iron Superoxide Dismutase in Escherichia coli: Functional Analysis of thesodB Promoter. Journal of Bacteriology, 182(13), 3802-3808. doi:10.1128/jb.182.13.3802-3808.2000 | es_ES |
dc.description.references | Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207-214. doi:10.1038/nmeth1019 | es_ES |
dc.description.references | Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342 | es_ES |
dc.description.references | Fernández de Henestrosa, A. R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J. J., Ohmori, H., & Woodgate, R. (2002). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Molecular Microbiology, 35(6), 1560-1572. doi:10.1046/j.1365-2958.2000.01826.x | es_ES |
dc.description.references | Ferreira, D., Pinto, F., Moradas-Ferreira, P., Mendes, M. V., & Tamagnini, P. (2009). Transcription profiles of hydrogenases related genes in the cyanobacterium Lyngbya majuscula CCAP 1446/4. BMC Microbiology, 9(1), 67. doi:10.1186/1471-2180-9-67 | es_ES |
dc.description.references | Gan, C. S., Reardon, K. F., & Wright, P. C. (2005). Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis ofSynechocystis sp. PCC 6803. PROTEOMICS, 5(9), 2468-2478. doi:10.1002/pmic.200401266 | es_ES |
dc.description.references | Gan, C. S., Chong, P. K., Pham, T. K., & Wright, P. C. (2007). Technical, Experimental, and Biological Variations in Isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Journal of Proteome Research, 6(2), 821-827. doi:10.1021/pr060474i | es_ES |
dc.description.references | Gómez-Garcı́a, M. R., Losada, M., & Serrano, A. (2003). Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochemical and Biophysical Research Communications, 302(3), 601-609. doi:10.1016/s0006-291x(03)00162-1 | es_ES |
dc.description.references | Gutekunst, K., Phunpruch, S., Schwarz, C., Schuchardt, S., Schulz-Friedrich, R., & Appel, J. (2005). LexA regulates the bidirectional hydrogenase in the cyanobacteriumSynechocystissp. PCC 6803 as a transcription activator. Molecular Microbiology, 58(3), 810-823. doi:10.1111/j.1365-2958.2005.04867.x | es_ES |
dc.description.references | Gutthann, F., Egert, M., Marques, A., & Appel, J. (2007). Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767(2), 161-169. doi:10.1016/j.bbabio.2006.12.003 | es_ES |
dc.description.references | Hall, H. K., & Foster, J. W. (1996). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. Journal of bacteriology, 178(19), 5683-5691. doi:10.1128/jb.178.19.5683-5691.1996 | es_ES |
dc.description.references | Hihara, Y., Muramatsu, M., Nakamura, K., & Sonoike, K. (2004). A cyanobacterial gene encoding an ortholog of Pirin is induced under stress conditions. FEBS Letters, 574(1-3), 101-105. doi:10.1016/j.febslet.2004.06.102 | es_ES |
dc.description.references | Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36(Web Server), W5-W9. doi:10.1093/nar/gkn201 | es_ES |
dc.description.references | Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., … Tabata, S. (1996). Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions. DNA Research, 3(3), 109-136. doi:10.1093/dnares/3.3.109 | es_ES |
dc.description.references | Kaneko, T. (2003). Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium, Synechocystis sp. PCC 6803. DNA Research, 10(5), 221-228. doi:10.1093/dnares/10.5.221 | es_ES |
dc.description.references | Kawakami, K., Iwai, M., Ikeuchi, M., Kamiya, N., & Shen, J.-R. (2007). Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography. FEBS Letters, 581(25), 4983-4987. doi:10.1016/j.febslet.2007.09.036 | es_ES |
dc.description.references | Keasling, J. D. (2008). Synthetic Biology for Synthetic Chemistry. ACS Chemical Biology, 3(1), 64-76. doi:10.1021/cb7002434 | es_ES |
dc.description.references | Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775 | es_ES |
dc.description.references | Kim, J.-H., & Suh, K. H. (2005). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Archives of Microbiology, 183(3), 218-223. doi:10.1007/s00203-005-0766-9 | es_ES |
dc.description.references | Kiss, É., Kós, P. B., & Vass, I. (2009). Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803. Journal of Biotechnology, 142(1), 31-37. doi:10.1016/j.jbiotec.2009.02.007 | es_ES |
dc.description.references | Kobayashi, M., Ishizuka, T., Katayama, M., Kanehisa, M., Bhattacharyya-Pakrasi, M., Pakrasi, H. B., & Ikeuchi, M. (2004). Response to Oxidative Stress Involves a Novel Peroxiredoxin Gene in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 45(3), 290-299. doi:10.1093/pcp/pch034 | es_ES |
dc.description.references | Wolk, O. K., C. (2002). Genetic tools for cyanobacteria. Applied Microbiology and Biotechnology, 58(2), 123-137. doi:10.1007/s00253-001-0864-9 | es_ES |
dc.description.references | KRENN, B. E., STROTMANN, H., WALRAVEN, H. S. V., SCHOLTS, M. J. C., & KRAAYENHOF, R. (1997). The ATP synthase γ subunit provides the primary site of activation of the chloroplast enzyme: experiments with a chloroplast-like Synechocystis 6803 mutant. Biochemical Journal, 323(3), 841-845. doi:10.1042/bj3230841 | es_ES |
dc.description.references | Kruip, J., Nixon, P. J., Osiewacz, H. D., & Rögner, M. (1994). Nucleotide sequence of the petB gene encoding cytochrome b6 from the mesophilic cyanobacterium Synechocystis PCC 6803: implications for evolution and function. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1188(3), 443-446. doi:10.1016/0005-2728(94)90068-x | es_ES |
dc.description.references | Kunert, A., Vinnemeier, J., Erdmann, N., & Hagemann, M. (2003). Repression by Fur is not the main mechanism controlling the iron-inducibleisiABoperon in the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 227(2), 255-262. doi:10.1016/s0378-1097(03)00689-x | es_ES |
dc.description.references | LEITAO, E., PEREIRA, S., BONDOSO, J., FERREIRA, D., PINTO, F., MORADASFERREIRA, P., & TAMAGNINI, P. (2006). Genes involved in the maturation of hydrogenase(s) in the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4. International Journal of Hydrogen Energy, 31(11), 1469-1477. doi:10.1016/j.ijhydene.2006.06.012 | es_ES |
dc.description.references | Li, H., Singh, A. K., McIntyre, L. M., & Sherman, L. A. (2004). Differential Gene Expression in Response to Hydrogen Peroxide and the Putative PerR Regulon of Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 186(11), 3331-3345. doi:10.1128/jb.186.11.3331-3345.2004 | es_ES |
dc.description.references | Li, S., Xu, M., & Su, Z. (2010). Computational analysis of LexA regulons in Cyanobacteria. BMC Genomics, 11(1), 527. doi:10.1186/1471-2164-11-527 | es_ES |
dc.description.references | Lindahl, M., & Florencio, F. J. (2003). Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proceedings of the National Academy of Sciences, 100(26), 16107-16112. doi:10.1073/pnas.2534397100 | es_ES |
dc.description.references | Little, J. W., & Mount, D. W. (1982). The SOS regulatory system of Escherichia coli. Cell, 29(1), 11-22. doi:10.1016/0092-8674(82)90085-x | es_ES |
dc.description.references | Ludwig, M., Schulz-Friedrich, R., & Appel, J. (2006). Occurrence of Hydrogenases in Cyanobacteria and Anoxygenic Photosynthetic Bacteria: Implications for the Phylogenetic Origin of Cyanobacterial and Algal Hydrogenases. Journal of Molecular Evolution, 63(6), 758-768. doi:10.1007/s00239-006-0001-6 | es_ES |
dc.description.references | Masukawa, M. Mochimaru, H. Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618-624. doi:10.1007/s00253-002-0934-7 | es_ES |
dc.description.references | McIntosh, C. L., Germer, F., Schulz, R., Appel, J., & Jones, A. K. (2011). The [NiFe]-Hydrogenase of the CyanobacteriumSynechocystissp. PCC 6803 Works Bidirectionally with a Bias to H2Production. Journal of the American Chemical Society, 133(29), 11308-11319. doi:10.1021/ja203376y | es_ES |
dc.description.references | McNeely, K., Xu, Y., Bennette, N., Bryant, D. A., & Dismukes, G. C. (2010). Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Applied and Environmental Microbiology, 76(15), 5032-5038. doi:10.1128/aem.00862-10 | es_ES |
dc.description.references | Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A., … Zehr, J. P. (2010). Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain. Science, 327(5972), 1512-1514. doi:10.1126/science.1185468 | es_ES |
dc.description.references | Motohashi, K., Kondoh, A., Stumpp, M. T., & Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences, 98(20), 11224-11229. doi:10.1073/pnas.191282098 | es_ES |
dc.description.references | Nakamura, Y. (2000). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Research, 28(1), 72-72. doi:10.1093/nar/28.1.72 | es_ES |
dc.description.references | Navarro, F., Martín-Figueroa, E., & Florencio, F. J. (2000). Plant Molecular Biology, 43(1), 23-32. doi:10.1023/a:1006472018601 | es_ES |
dc.description.references | Nefedova, L. N. (2003). Russian Journal of Genetics, 39(4), 386-389. doi:10.1023/a:1023349412798 | es_ES |
dc.description.references | Noirel, J., Sanguinetti, G., & Wright, P. C. (2008). Identifying differentially expressed subnetworks with MMG. Bioinformatics, 24(23), 2792-2793. doi:10.1093/bioinformatics/btn499 | es_ES |
dc.description.references | Noirel, J., Ow, S. Y., Sanguinetti, G., & Wright, P. C. (2009). Systems biology meets synthetic biology: a case study of the metabolic effects of synthetic rewiring. Molecular BioSystems, 5(10), 1214. doi:10.1039/b904729h | es_ES |
dc.description.references | Noirel, J., Evans, C., Salim, M., Mukherjee, J., Yen Ow, S., Pandhal, J., … C. Wright, P. (2011). Methods in Quantitative Proteomics: Setting iTRAQ on the Right Track. Current Proteomics, 8(1), 17-30. doi:10.2174/157016411794697408 | es_ES |
dc.description.references | Nunoshiba, T., Obata, F., Boss, A. C., Oikawa, S., Mori, T., Kawanishi, S., & Yamamoto, K. (1999). Role of Iron and Superoxide for Generation of Hydroxyl Radical, Oxidative DNA Lesions, and Mutagenesis inEscherichia coli. Journal of Biological Chemistry, 274(49), 34832-34837. doi:10.1074/jbc.274.49.34832 | es_ES |
dc.description.references | Oliveira, P., & Lindblad, P. (2005). LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 251(1), 59-66. doi:10.1016/j.femsle.2005.07.024 | es_ES |
dc.description.references | Oliveira, P., & Lindblad, P. (2007). An AbrB-Like Protein Regulates the Expression of the Bidirectional Hydrogenase in Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 190(3), 1011-1019. doi:10.1128/jb.01605-07 | es_ES |
dc.description.references | Oliveira, P., & Lindblad, P. (2009). Transcriptional regulation of the cyanobacterial bidirectional Hox-hydrogenase. Dalton Transactions, (45), 9990. doi:10.1039/b908593a | es_ES |
dc.description.references | Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, H., Asayama, M., Shirai, M., … Tanaka, K. (2005). Positive Regulation of Sugar Catabolic Pathways in the CyanobacteriumSynechocystissp. PCC 6803 by the Group 2 σ Factor SigE. Journal of Biological Chemistry, 280(35), 30653-30659. doi:10.1074/jbc.m505043200 | es_ES |
dc.description.references | Ow, S. Y., & Wright, P. C. (2009). Current trends in high throughput proteomics in cyanobacteria. FEBS Letters, 583(11), 1744-1752. doi:10.1016/j.febslet.2009.03.062 | es_ES |
dc.description.references | Ow, S. Y., Salim, M., Noirel, J., Evans, C., Rehman, I., & Wright, P. C. (2009). iTRAQ Underestimation in Simple and Complex Mixtures: «The Good, the Bad and the Ugly». Journal of Proteome Research, 8(11), 5347-5355. doi:10.1021/pr900634c | es_ES |
dc.description.references | Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1717(2), 67-88. doi:10.1016/j.bbamem.2005.09.010 | es_ES |
dc.description.references | Patterson-Fortin, L. M. (2006). A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Research, 34(12), 3446-3454. doi:10.1093/nar/gkl426 | es_ES |
dc.description.references | Pérez-Pérez, M. E., Martín-Figueroa, E., & Florencio, F. J. (2009). Photosynthetic Regulation of the Cyanobacterium Synechocystis sp. PCC 6803 Thioredoxin System and Functional Analysis of TrxB (Trx x) and TrxQ (Trx y) Thioredoxins. Molecular Plant, 2(2), 270-283. doi:10.1093/mp/ssn070 | es_ES |
dc.description.references | Pham, T. K., Roy, S., Noirel, J., Douglas, I., Wright, P. C., & Stafford, G. P. (2010). A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia. PROTEOMICS, 10(17), 3130-3141. doi:10.1002/pmic.200900448 | es_ES |
dc.description.references | Posfai, G. (2006). Emergent Properties of Reduced-Genome Escherichia coli. Science, 312(5776), 1044-1046. doi:10.1126/science.1126439 | es_ES |
dc.description.references | Reidegeld, K. A., Eisenacher, M., Kohl, M., Chamrad, D., Körting, G., Blüggel, M., … Stephan, C. (2008). An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. PROTEOMICS, 8(6), 1129-1137. doi:10.1002/pmic.200701073 | es_ES |
dc.description.references | Sakthivel, K., Watanabe, T., & Nakamoto, H. (2009). A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Archives of Microbiology, 191(4), 319-328. doi:10.1007/s00203-009-0457-z | es_ES |
dc.description.references | Sanguinetti, G., Noirel, J., & Wright, P. C. (2008). MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics, 24(8), 1078-1084. doi:10.1093/bioinformatics/btn066 | es_ES |
dc.description.references | Sato, S., Shimoda, Y., Muraki, A., Kohara, M., Nakamura, Y., & Tabata, S. (2007). A Large-scale Protein–protein Interaction Analysis in Synechocystis sp. PCC6803. DNA Research, 14(5), 207-216. doi:10.1093/dnares/dsm021 | es_ES |
dc.description.references | Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145(1), 69-73. doi:10.1016/0378-1119(94)90324-7 | es_ES |
dc.description.references | Schmitt, W. A., & Stephanopoulos, G. (2003). Prediction of transcriptional profiles ofSynechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnology and Bioengineering, 84(7), 855-863. doi:10.1002/bit.10843 | es_ES |
dc.description.references | Schmitz, O., & Bothe, H. (1996). The diaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften, 83(11), 525-527. doi:10.1007/bf01141957 | es_ES |
dc.description.references | Sch�tz, K., Happe, T., Troshina, O., Lindblad, P., Leit�o, E., Oliveira, P., & Tamagnini, P. (2004). Cyanobacterial H2 production ? a comparative analysis. Planta, 218(3), 350-359. doi:10.1007/s00425-003-1113-5 | es_ES |
dc.description.references | Sharma, S. S., Blattner, F. R., & Harcum, S. W. (2007). Recombinant protein production in an Escherichia coli reduced genome strain. Metabolic Engineering, 9(2), 133-141. doi:10.1016/j.ymben.2006.10.002 | es_ES |
dc.description.references | Sharma, S. S., Campbell, J. W., Frisch, D., Blattner, F. R., & Harcum, S. W. (2007). Expression of two recombinant chloramphenicol acetyltransferase variants in highly reduced genomeEscherichia coli strains. Biotechnology and Bioengineering, 98(5), 1056-1070. doi:10.1002/bit.21491 | es_ES |
dc.description.references | Shcolnick, S., Summerfield, T. C., Reytman, L., Sherman, L. A., & Keren, N. (2009). The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 and Its Relationship to Oxidative Stress. Plant Physiology, 150(4), 2045-2056. doi:10.1104/pp.109.141853 | es_ES |
dc.description.references | Sherman, D. M., Troyan, T. A., & Sherman, L. A. (1994). Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes). Plant Physiology, 106(1), 251-262. doi:10.1104/pp.106.1.251 | es_ES |
dc.description.references | Sjöholm, J., Oliveira, P., & Lindblad, P. (2007). Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120. Applied and Environmental Microbiology, 73(17), 5435-5446. doi:10.1128/aem.00756-07 | es_ES |
dc.description.references | Stal, L. (1997). Fermentation in cyanobacteria. FEMS Microbiology Reviews, 21(2), 179-211. doi:10.1016/s0168-6445(97)00056-9 | es_ES |
dc.description.references | Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171-205. doi:10.1128/mmbr.35.2.171-205.1971 | es_ES |
dc.description.references | Stroebel, D., Choquet, Y., Popot, J.-L., & Picot, D. (2003). An atypical haem in the cytochrome b6f complex. Nature, 426(6965), 413-418. doi:10.1038/nature02155 | es_ES |
dc.description.references | Summerfield, T. C., & Sherman, L. A. (2008). Global Transcriptional Response of the Alkali-Tolerant Cyanobacterium Synechocystis sp. Strain PCC 6803 to a pH 10 Environment. Applied and Environmental Microbiology, 74(17), 5276-5284. doi:10.1128/aem.00883-08 | es_ES |
dc.description.references | Summerfield, T. C., Nagarajan, S., & Sherman, L. A. (2011). Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. Microbiology, 157(2), 301-312. doi:10.1099/mic.0.041053-0 | es_ES |
dc.description.references | Suzuki, I. (2006). The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. Journal of Experimental Botany, 57(7), 1573-1578. doi:10.1093/jxb/erj148 | es_ES |
dc.description.references | Tamagnini, P., Troshina, O., Oxelfelt, F., Salema, R., & Lindblad, P. (1997). Hydrogenases in Nostoc sp. Strain PCC 73102, a Strain Lacking a Bidirectional Enzyme. Applied and environmental microbiology, 63(5), 1801-1807. doi:10.1128/aem.63.5.1801-1807.1997 | es_ES |
dc.description.references | Tamagnini, P., Costa, J.-L., Almeida, L., Oliveira, M.-J., Salema, R., & Lindblad, P. (2000). Diversity of Cyanobacterial Hydrogenases, a Molecular Approach. Current Microbiology, 40(6), 356-361. doi:10.1007/s002840010070 | es_ES |
dc.description.references | Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and Hydrogen Metabolism of Cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1-20. doi:10.1128/mmbr.66.1.1-20.2002 | es_ES |
dc.description.references | Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. J., … Lindblad, P. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiology Reviews, 31(6), 692-720. doi:10.1111/j.1574-6976.2007.00085.x | es_ES |
dc.description.references | TROSHINA, O. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11-12), 1283-1289. doi:10.1016/s0360-3199(02)00103-9 | es_ES |
dc.description.references | Ushimaru, T., Nishiyama, Y., Hayashi, H., & Murata, N. (2002). No coordinated transcriptional regulation of the sod-kat antioxidative system in Synechocystis sp. PCC 6803. Journal of Plant Physiology, 159(7), 805-807. doi:10.1078/0176-1617-0812 | es_ES |
dc.description.references | Van der Oost, J., Bulthuis, B. A., Feitz, S., Krab, K., & Kraayenhof, R. (1989). Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Archives of Microbiology, 152(5), 415-419. doi:10.1007/bf00446921 | es_ES |
dc.description.references | Vila-Sanjurjo, A., Schuwirth, B.-S., Hau, C. W., & Cate, J. H. D. (2004). Structural basis for the control of translation initiation during stress. Nature Structural & Molecular Biology, 11(11), 1054-1059. doi:10.1038/nsmb850 | es_ES |
dc.description.references | Vinnemeier, J., Kunert, A., & Hagemann, M. (1998). Transcriptional analysis of theisiABoperon in salt-stressed cells of the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 169(2), 323-330. doi:10.1111/j.1574-6968.1998.tb13336.x | es_ES |
dc.description.references | Williams, J. G. K. (1988). [85] Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Cyanobacteria, 766-778. doi:10.1016/0076-6879(88)67088-1 | es_ES |
dc.description.references | Xu, W., & McFadden, B. A. (1997). Sequence Analysis of Plasmid pCC5.2 from CyanobacteriumSynechocystisPCC 6803 That Replicates by a Rolling Circle Mechanism. Plasmid, 37(2), 95-104. doi:10.1006/plas.1997.1281 | es_ES |
dc.description.references | Yadav, V. G., & Stephanopoulos, G. (2010). Reevaluating synthesis by biology. Current Opinion in Microbiology, 13(3), 371-376. doi:10.1016/j.mib.2010.04.002 | es_ES |
dc.description.references | Yang, X., & McFadden, B. A. (1993). A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism. Journal of Bacteriology, 175(13), 3981-3991. doi:10.1128/jb.175.13.3981-3991.1993 | es_ES |
dc.description.references | Yang, X., & McFadden, B. A. (1994). The Complete DNA Sequence and Replication Analysis of the Plasmid pCB2.4 from the Cyanobacterium Synechocystis PCC 6803. Plasmid, 31(2), 131-137. doi:10.1006/plas.1994.1014 | es_ES |
dc.description.references | Zhang, Z., Pendse, N. D., Phillips, K. N., Cotner, J. B., & Khodursky, A. (2008). Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics, 9(1), 344. doi:10.1186/1471-2164-9-344 | es_ES |