- -

Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase

Show simple item record

Files in this item

dc.contributor.author Pinto, F. es_ES
dc.contributor.author Van Elburg, K.A. es_ES
dc.contributor.author Pacheco, C.C. es_ES
dc.contributor.author Lopo, M. es_ES
dc.contributor.author Noirel, J. es_ES
dc.contributor.author Montagud Aquino, Arnau es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.contributor.author Wright, P.C. es_ES
dc.contributor.author Tamagnini, P. es_ES
dc.date.accessioned 2020-10-05T06:59:57Z
dc.date.available 2020-10-05T06:59:57Z
dc.date.issued 2012-02-01 es_ES
dc.identifier.issn 1350-0872 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151094
dc.description.abstract [EN] Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic manipulation. The unicellular non-nitrogen-fixing Synechocystis sp. PCC 6803 is the best studied cyanobacterial strain and its genome was the first to be sequenced. The vast amount of physiological and molecular data available, together with a relatively small genome, makes Synechocystis suitable for computational metabolic modelling and to be used as a photoautotrophic chassis in synthetic biology applications. To prepare it for the introduction of a synthetic hydrogen producing device, a Synechocystis sp. PCC 6803 deletion mutant lacking an active bidirectional hydrogenase (Delta hoxYH) was produced and characterized at different levels: physiological, proteomic and transcriptional. The results showed that, under conditions favouring hydrogenase activity, 17 of the 210 identified proteins had significant differential fold changes in comparisons of the mutant with the wild-type. Most of these proteins are related to the redox and energy state of the cell. Transcriptional studies revealed that only six genes encoding those proteins exhibited significant differences in transcript levels. Moreover, the mutant exhibits similar growth behaviour compared with the wild-type, reflecting Synechocystis plasticity and metabolic adaptability. Overall, this study reveals that the Synechocystis Delta hoxYH mutant is robust and can be used as a photoautotrophic chassis for the integration of synthetic constructs, i.e. molecular constructs assembled from well characterized biological and/or synthetic parts (e.g. promoters, regulators, coding regions, terminators) designed for a specific purpose. es_ES
dc.description.sponsorship This work was financially supported by EU FP6-NEST-2005-Path-SYN project BioModularH2 (contract no. 043340); Fundacao para a Ciencia e a Tecnologia (SFRH/BD/36378/2007, SFRH/BPD/64095/2009, PTDC/BIA-MIC/100370/2008); European Science Foundation (III Quadro Comunitario de Apoio), COMPETE - Programa Operacional Eactores de Competitividade na sua componente FEDER; Accoes Integradas Luso-Britanicas, Treaty of Windsor Programme 2010-11 (Processo B18/10); Engineering and Physical Sciences Research Council (EP/E036252/1), under the ChELSI initiative; Generalitat Valenciana grant BFPI/2007/283; and MICINN project ArtBioCom (TIN2009-12359). The authors are grateful to Dr Alan Dunbar (Chemical and Biological Engineering, University of Sheffield) and Dr Saw Ow Yen (Chemical and Biological Engineering, University of Sheffield) for helpful discussion. The authors would also like to thank the 'National BioResource Project (NIG, Japan): E. coli for providing the plasmid pK18mobsacB. es_ES
dc.language Inglés es_ES
dc.publisher SOC GENERAL MICROBIOLOGY es_ES
dc.relation.ispartof Microbiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SPstrain pcc-6803 es_ES
dc.subject Absolute quantitation itraq es_ES
dc.subject Rolling circle mechanism es_ES
dc.subject Cytochrome b(6)f complex es_ES
dc.subject Genome escherichia-coli es_ES
dc.subject Unicellular cyanobacterium es_ES
dc.subject Superoxide-dismutase es_ES
dc.subject Synthetic biology es_ES
dc.subject Oxidative stress es_ES
dc.subject Gene-expression es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1099/mic.0.052282-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/100370/PT/Regulation and maturation of hydrogenases in cyanobacteria/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/43340/EU/Engineered modular bacterial hydrogen photo-production of hydrogen/BIOMODULARH2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F36378%2F2007/PT/ENGINEERING OF A CYANOBACTERIUM FOR BIOHYDROGEN PRODUCTION: A NEW COMPUTATIONAL ASSISTED DESIGN OF A PHOTOAUTOTROPHIC CHASSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FE036252%2F1/GB/ChELSI: Chemical Engineering Life Science Interface/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F64095%2F2009/PT/MODULES AND CIRCUITS FOR H2 PRODUCTION, A SYNTHETIC BIOLOGY APPROACH USING SYNECHOCYSTIS SP. PCC 6803 AS A PHOTOAUTOTROPHIC CHASSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//BFPI%2F2007%2F283/ES/BFPI%2F2007%2F283/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-12359/ES/Integracion De Bases De Datos Biologicas Con Nuevas Herramientas De Computo En Biologia Sintetica Orientadas A La Produccion De Biocombustibles/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Pinto, F.; Van Elburg, K.; Pacheco, C.; Lopo, M.; Noirel, J.; Montagud Aquino, A.; Urchueguía Schölzel, JF.... (2012). Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology. 158(2):448-464. https://doi.org/10.1099/mic.0.052282-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1099/mic.0.052282-0 es_ES
dc.description.upvformatpinicio 448 es_ES
dc.description.upvformatpfin 464 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 158 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 22096147 es_ES
dc.relation.pasarela S\240620 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Science Foundation es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación y Ciencia e Innovación es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12. doi:10.1111/j.1365-2672.2008.03918.x es_ES
dc.description.references Agafonov, D. E., Kolb, V. A., & Spirin, A. S. (2001). Ribosome‐associated protein that inhibits translation at the aminoacyl‐tRNA binding stage. EMBO reports, 2(5), 399-402. doi:10.1093/embo-reports/kve091 es_ES
dc.description.references Ananyev, G., Carrieri, D., & Dismukes, G. C. (2008). Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium «Arthrospira (Spirulina) maxima». Applied and Environmental Microbiology, 74(19), 6102-6113. doi:10.1128/aem.01078-08 es_ES
dc.description.references Angermayr, S. A., Hellingwerf, K. J., Lindblad, P., & Teixeira de Mattos, M. J. (2009). Energy biotechnology with cyanobacteria. Current Opinion in Biotechnology, 20(3), 257-263. doi:10.1016/j.copbio.2009.05.011 es_ES
dc.description.references Antal, T. K., & Lindblad, P. (2005). Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology, 98(1), 114-120. doi:10.1111/j.1365-2672.2004.02431.x es_ES
dc.description.references ANTAL, T., OLIVEIRA, P., & LINDBLAD, P. (2006). The bidirectional hydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 31(11), 1439-1444. doi:10.1016/j.ijhydene.2006.06.037 es_ES
dc.description.references Appel, J., & Schulz, R. (1996). Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex 1). Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1298(2), 141-147. doi:10.1016/s0167-4838(96)00176-8 es_ES
dc.description.references Appel, J., & Schulz, R. (1998). Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry and Photobiology B: Biology, 47(1), 1-11. doi:10.1016/s1011-1344(98)00179-1 es_ES
dc.description.references Appel, J., Phunpruch, S., & Schulz, R. (s. f.). Hydrogenase(s) in Synechocystis. BioHydrogen, 189-196. doi:10.1007/978-0-585-35132-2_25 es_ES
dc.description.references Appel, J., Phunpruch, S., Steinmüller, K., & Schulz, R. (2000). The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Archives of Microbiology, 173(5-6), 333-338. doi:10.1007/s002030000139 es_ES
dc.description.references Barrios-Llerena, M. E. (2006). Shotgun proteomics of cyanobacteria--applications of experimental and data-mining techniques. Briefings in Functional Genomics and Proteomics, 5(2), 121-132. doi:10.1093/bfgp/ell021 es_ES
dc.description.references Bashor, C. J., Horwitz, A. A., Peisajovich, S. G., & Lim, W. A. (2010). Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems. Annual Review of Biophysics, 39(1), 515-537. doi:10.1146/annurev.biophys.050708.133652 es_ES
dc.description.references Bhaya, D., Vaulot, D., Amin, P., Takahashi, A. W., & Grossman, A. R. (2000). Isolation of Regulated Genes of the CyanobacteriumSynechocystis sp. Strain PCC 6803 by Differential Display. Journal of Bacteriology, 182(20), 5692-5699. doi:10.1128/jb.182.20.5692-5699.2000 es_ES
dc.description.references Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiology and Molecular Biology Reviews, 74(4), 529-551. doi:10.1128/mmbr.00033-10 es_ES
dc.description.references Bothe, H., Tripp, H. J., & Zehr, J. P. (2010). Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Archives of Microbiology, 192(10), 783-790. doi:10.1007/s00203-010-0621-5 es_ES
dc.description.references Brand, S. N., Tan, X., & Widger, W. R. (1992). Cloning and sequencing of the petBD operon from the cyanobacterium Synechococcus sp. PCC 7002. Plant Molecular Biology, 20(3), 481-491. doi:10.1007/bf00040607 es_ES
dc.description.references Burja, A. M., Banaigs, B., Abou-Mansour, E., Grant Burgess, J., & Wright, P. C. (2001). Marine cyanobacteria—a prolific source of natural products. Tetrahedron, 57(46), 9347-9377. doi:10.1016/s0040-4020(01)00931-0 es_ES
dc.description.references Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., & Maness, P.-C. (2011). The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technology, 102(18), 8368-8377. doi:10.1016/j.biortech.2011.03.103 es_ES
dc.description.references Chong, P. K., Gan, C. S., Pham, T. K., & Wright, P. C. (2006). Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Reproducibility:  Implication of Multiple Injections. Journal of Proteome Research, 5(5), 1232-1240. doi:10.1021/pr060018u es_ES
dc.description.references COURNAC, L. (2002). Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. International Journal of Hydrogen Energy, 27(11-12), 1229-1237. doi:10.1016/s0360-3199(02)00105-2 es_ES
dc.description.references Cournac, L., Guedeney, G., Peltier, G., & Vignais, P. M. (2004). Sustained Photoevolution of Molecular Hydrogen in a Mutant of Synechocystis sp. Strain PCC 6803 Deficient in the Type I NADPH-Dehydrogenase Complex. Journal of Bacteriology, 186(6), 1737-1746. doi:10.1128/jb.186.6.1737-1746.2003 es_ES
dc.description.references Cramer, W. A., Martinez, S. E., Furbacher, P. N., Huang, D., & Smith, J. L. (1994). The cytochrome b6f complex. Current Opinion in Structural Biology, 4(4), 536-544. doi:10.1016/s0959-440x(94)90216-x es_ES
dc.description.references Dembitsky, V. M. (2006). Anticancer activity of natural and synthetic acetylenic lipids. Lipids, 41(10), 883-924. doi:10.1007/s11745-006-5044-3 es_ES
dc.description.references Devillers, J., Doré, J. C., Guyot, M., Poroikov, V., Gloriozova, T., Lagunin, A., & Filimonov, D. (2007). Prediction of biological activity profiles of cyanobacterial secondary metabolites. SAR and QSAR in Environmental Research, 18(7-8), 629-643. doi:10.1080/10629360701698704 es_ES
dc.description.references Dubrac, S., & Touati, D. (2000). Fur Positive Regulation of Iron Superoxide Dismutase in Escherichia coli: Functional Analysis of thesodB Promoter. Journal of Bacteriology, 182(13), 3802-3808. doi:10.1128/jb.182.13.3802-3808.2000 es_ES
dc.description.references Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207-214. doi:10.1038/nmeth1019 es_ES
dc.description.references Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449-453. doi:10.1038/nature04342 es_ES
dc.description.references Fernández de Henestrosa, A. R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J. J., Ohmori, H., & Woodgate, R. (2002). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Molecular Microbiology, 35(6), 1560-1572. doi:10.1046/j.1365-2958.2000.01826.x es_ES
dc.description.references Ferreira, D., Pinto, F., Moradas-Ferreira, P., Mendes, M. V., & Tamagnini, P. (2009). Transcription profiles of hydrogenases related genes in the cyanobacterium Lyngbya majuscula CCAP 1446/4. BMC Microbiology, 9(1), 67. doi:10.1186/1471-2180-9-67 es_ES
dc.description.references Gan, C. S., Reardon, K. F., & Wright, P. C. (2005). Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis ofSynechocystis sp. PCC 6803. PROTEOMICS, 5(9), 2468-2478. doi:10.1002/pmic.200401266 es_ES
dc.description.references Gan, C. S., Chong, P. K., Pham, T. K., & Wright, P. C. (2007). Technical, Experimental, and Biological Variations in Isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Journal of Proteome Research, 6(2), 821-827. doi:10.1021/pr060474i es_ES
dc.description.references Gómez-Garcı́a, M. R., Losada, M., & Serrano, A. (2003). Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochemical and Biophysical Research Communications, 302(3), 601-609. doi:10.1016/s0006-291x(03)00162-1 es_ES
dc.description.references Gutekunst, K., Phunpruch, S., Schwarz, C., Schuchardt, S., Schulz-Friedrich, R., & Appel, J. (2005). LexA regulates the bidirectional hydrogenase in the cyanobacteriumSynechocystissp. PCC 6803 as a transcription activator. Molecular Microbiology, 58(3), 810-823. doi:10.1111/j.1365-2958.2005.04867.x es_ES
dc.description.references Gutthann, F., Egert, M., Marques, A., & Appel, J. (2007). Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767(2), 161-169. doi:10.1016/j.bbabio.2006.12.003 es_ES
dc.description.references Hall, H. K., & Foster, J. W. (1996). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. Journal of bacteriology, 178(19), 5683-5691. doi:10.1128/jb.178.19.5683-5691.1996 es_ES
dc.description.references Hihara, Y., Muramatsu, M., Nakamura, K., & Sonoike, K. (2004). A cyanobacterial gene encoding an ortholog of Pirin is induced under stress conditions. FEBS Letters, 574(1-3), 101-105. doi:10.1016/j.febslet.2004.06.102 es_ES
dc.description.references Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36(Web Server), W5-W9. doi:10.1093/nar/gkn201 es_ES
dc.description.references Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., … Tabata, S. (1996). Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions. DNA Research, 3(3), 109-136. doi:10.1093/dnares/3.3.109 es_ES
dc.description.references Kaneko, T. (2003). Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium, Synechocystis sp. PCC 6803. DNA Research, 10(5), 221-228. doi:10.1093/dnares/10.5.221 es_ES
dc.description.references Kawakami, K., Iwai, M., Ikeuchi, M., Kamiya, N., & Shen, J.-R. (2007). Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography. FEBS Letters, 581(25), 4983-4987. doi:10.1016/j.febslet.2007.09.036 es_ES
dc.description.references Keasling, J. D. (2008). Synthetic Biology for Synthetic Chemistry. ACS Chemical Biology, 3(1), 64-76. doi:10.1021/cb7002434 es_ES
dc.description.references Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775 es_ES
dc.description.references Kim, J.-H., & Suh, K. H. (2005). Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Archives of Microbiology, 183(3), 218-223. doi:10.1007/s00203-005-0766-9 es_ES
dc.description.references Kiss, É., Kós, P. B., & Vass, I. (2009). Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803. Journal of Biotechnology, 142(1), 31-37. doi:10.1016/j.jbiotec.2009.02.007 es_ES
dc.description.references Kobayashi, M., Ishizuka, T., Katayama, M., Kanehisa, M., Bhattacharyya-Pakrasi, M., Pakrasi, H. B., & Ikeuchi, M. (2004). Response to Oxidative Stress Involves a Novel Peroxiredoxin Gene in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 45(3), 290-299. doi:10.1093/pcp/pch034 es_ES
dc.description.references Wolk, O. K., C. (2002). Genetic tools for cyanobacteria. Applied Microbiology and Biotechnology, 58(2), 123-137. doi:10.1007/s00253-001-0864-9 es_ES
dc.description.references KRENN, B. E., STROTMANN, H., WALRAVEN, H. S. V., SCHOLTS, M. J. C., & KRAAYENHOF, R. (1997). The ATP synthase γ subunit provides the primary site of activation of the chloroplast enzyme: experiments with a chloroplast-like Synechocystis 6803 mutant. Biochemical Journal, 323(3), 841-845. doi:10.1042/bj3230841 es_ES
dc.description.references Kruip, J., Nixon, P. J., Osiewacz, H. D., & Rögner, M. (1994). Nucleotide sequence of the petB gene encoding cytochrome b6 from the mesophilic cyanobacterium Synechocystis PCC 6803: implications for evolution and function. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1188(3), 443-446. doi:10.1016/0005-2728(94)90068-x es_ES
dc.description.references Kunert, A., Vinnemeier, J., Erdmann, N., & Hagemann, M. (2003). Repression by Fur is not the main mechanism controlling the iron-inducibleisiABoperon in the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 227(2), 255-262. doi:10.1016/s0378-1097(03)00689-x es_ES
dc.description.references LEITAO, E., PEREIRA, S., BONDOSO, J., FERREIRA, D., PINTO, F., MORADASFERREIRA, P., & TAMAGNINI, P. (2006). Genes involved in the maturation of hydrogenase(s) in the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4. International Journal of Hydrogen Energy, 31(11), 1469-1477. doi:10.1016/j.ijhydene.2006.06.012 es_ES
dc.description.references Li, H., Singh, A. K., McIntyre, L. M., & Sherman, L. A. (2004). Differential Gene Expression in Response to Hydrogen Peroxide and the Putative PerR Regulon of Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 186(11), 3331-3345. doi:10.1128/jb.186.11.3331-3345.2004 es_ES
dc.description.references Li, S., Xu, M., & Su, Z. (2010). Computational analysis of LexA regulons in Cyanobacteria. BMC Genomics, 11(1), 527. doi:10.1186/1471-2164-11-527 es_ES
dc.description.references Lindahl, M., & Florencio, F. J. (2003). Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proceedings of the National Academy of Sciences, 100(26), 16107-16112. doi:10.1073/pnas.2534397100 es_ES
dc.description.references Little, J. W., & Mount, D. W. (1982). The SOS regulatory system of Escherichia coli. Cell, 29(1), 11-22. doi:10.1016/0092-8674(82)90085-x es_ES
dc.description.references Ludwig, M., Schulz-Friedrich, R., & Appel, J. (2006). Occurrence of Hydrogenases in Cyanobacteria and Anoxygenic Photosynthetic Bacteria: Implications for the Phylogenetic Origin of Cyanobacterial and Algal Hydrogenases. Journal of Molecular Evolution, 63(6), 758-768. doi:10.1007/s00239-006-0001-6 es_ES
dc.description.references Masukawa, M. Mochimaru, H. Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618-624. doi:10.1007/s00253-002-0934-7 es_ES
dc.description.references McIntosh, C. L., Germer, F., Schulz, R., Appel, J., & Jones, A. K. (2011). The [NiFe]-Hydrogenase of the CyanobacteriumSynechocystissp. PCC 6803 Works Bidirectionally with a Bias to H2Production. Journal of the American Chemical Society, 133(29), 11308-11319. doi:10.1021/ja203376y es_ES
dc.description.references McNeely, K., Xu, Y., Bennette, N., Bryant, D. A., & Dismukes, G. C. (2010). Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Applied and Environmental Microbiology, 76(15), 5032-5038. doi:10.1128/aem.00862-10 es_ES
dc.description.references Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A., … Zehr, J. P. (2010). Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain. Science, 327(5972), 1512-1514. doi:10.1126/science.1185468 es_ES
dc.description.references Motohashi, K., Kondoh, A., Stumpp, M. T., & Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences, 98(20), 11224-11229. doi:10.1073/pnas.191282098 es_ES
dc.description.references Nakamura, Y. (2000). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Research, 28(1), 72-72. doi:10.1093/nar/28.1.72 es_ES
dc.description.references Navarro, F., Martín-Figueroa, E., & Florencio, F. J. (2000). Plant Molecular Biology, 43(1), 23-32. doi:10.1023/a:1006472018601 es_ES
dc.description.references Nefedova, L. N. (2003). Russian Journal of Genetics, 39(4), 386-389. doi:10.1023/a:1023349412798 es_ES
dc.description.references Noirel, J., Sanguinetti, G., & Wright, P. C. (2008). Identifying differentially expressed subnetworks with MMG. Bioinformatics, 24(23), 2792-2793. doi:10.1093/bioinformatics/btn499 es_ES
dc.description.references Noirel, J., Ow, S. Y., Sanguinetti, G., & Wright, P. C. (2009). Systems biology meets synthetic biology: a case study of the metabolic effects of synthetic rewiring. Molecular BioSystems, 5(10), 1214. doi:10.1039/b904729h es_ES
dc.description.references Noirel, J., Evans, C., Salim, M., Mukherjee, J., Yen Ow, S., Pandhal, J., … C. Wright, P. (2011). Methods in Quantitative Proteomics: Setting iTRAQ on the Right Track. Current Proteomics, 8(1), 17-30. doi:10.2174/157016411794697408 es_ES
dc.description.references Nunoshiba, T., Obata, F., Boss, A. C., Oikawa, S., Mori, T., Kawanishi, S., & Yamamoto, K. (1999). Role of Iron and Superoxide for Generation of Hydroxyl Radical, Oxidative DNA Lesions, and Mutagenesis inEscherichia coli. Journal of Biological Chemistry, 274(49), 34832-34837. doi:10.1074/jbc.274.49.34832 es_ES
dc.description.references Oliveira, P., & Lindblad, P. (2005). LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 251(1), 59-66. doi:10.1016/j.femsle.2005.07.024 es_ES
dc.description.references Oliveira, P., & Lindblad, P. (2007). An AbrB-Like Protein Regulates the Expression of the Bidirectional Hydrogenase in Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 190(3), 1011-1019. doi:10.1128/jb.01605-07 es_ES
dc.description.references Oliveira, P., & Lindblad, P. (2009). Transcriptional regulation of the cyanobacterial bidirectional Hox-hydrogenase. Dalton Transactions, (45), 9990. doi:10.1039/b908593a es_ES
dc.description.references Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, H., Asayama, M., Shirai, M., … Tanaka, K. (2005). Positive Regulation of Sugar Catabolic Pathways in the CyanobacteriumSynechocystissp. PCC 6803 by the Group 2 σ Factor SigE. Journal of Biological Chemistry, 280(35), 30653-30659. doi:10.1074/jbc.m505043200 es_ES
dc.description.references Ow, S. Y., & Wright, P. C. (2009). Current trends in high throughput proteomics in cyanobacteria. FEBS Letters, 583(11), 1744-1752. doi:10.1016/j.febslet.2009.03.062 es_ES
dc.description.references Ow, S. Y., Salim, M., Noirel, J., Evans, C., Rehman, I., & Wright, P. C. (2009). iTRAQ Underestimation in Simple and Complex Mixtures: «The Good, the Bad and the Ugly». Journal of Proteome Research, 8(11), 5347-5355. doi:10.1021/pr900634c es_ES
dc.description.references Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1717(2), 67-88. doi:10.1016/j.bbamem.2005.09.010 es_ES
dc.description.references Patterson-Fortin, L. M. (2006). A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Research, 34(12), 3446-3454. doi:10.1093/nar/gkl426 es_ES
dc.description.references Pérez-Pérez, M. E., Martín-Figueroa, E., & Florencio, F. J. (2009). Photosynthetic Regulation of the Cyanobacterium Synechocystis sp. PCC 6803 Thioredoxin System and Functional Analysis of TrxB (Trx x) and TrxQ (Trx y) Thioredoxins. Molecular Plant, 2(2), 270-283. doi:10.1093/mp/ssn070 es_ES
dc.description.references Pham, T. K., Roy, S., Noirel, J., Douglas, I., Wright, P. C., & Stafford, G. P. (2010). A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia. PROTEOMICS, 10(17), 3130-3141. doi:10.1002/pmic.200900448 es_ES
dc.description.references Posfai, G. (2006). Emergent Properties of Reduced-Genome Escherichia coli. Science, 312(5776), 1044-1046. doi:10.1126/science.1126439 es_ES
dc.description.references Reidegeld, K. A., Eisenacher, M., Kohl, M., Chamrad, D., Körting, G., Blüggel, M., … Stephan, C. (2008). An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. PROTEOMICS, 8(6), 1129-1137. doi:10.1002/pmic.200701073 es_ES
dc.description.references Sakthivel, K., Watanabe, T., & Nakamoto, H. (2009). A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Archives of Microbiology, 191(4), 319-328. doi:10.1007/s00203-009-0457-z es_ES
dc.description.references Sanguinetti, G., Noirel, J., & Wright, P. C. (2008). MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics, 24(8), 1078-1084. doi:10.1093/bioinformatics/btn066 es_ES
dc.description.references Sato, S., Shimoda, Y., Muraki, A., Kohara, M., Nakamura, Y., & Tabata, S. (2007). A Large-scale Protein–protein Interaction Analysis in Synechocystis sp. PCC6803. DNA Research, 14(5), 207-216. doi:10.1093/dnares/dsm021 es_ES
dc.description.references Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145(1), 69-73. doi:10.1016/0378-1119(94)90324-7 es_ES
dc.description.references Schmitt, W. A., & Stephanopoulos, G. (2003). Prediction of transcriptional profiles ofSynechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnology and Bioengineering, 84(7), 855-863. doi:10.1002/bit.10843 es_ES
dc.description.references Schmitz, O., & Bothe, H. (1996). The diaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften, 83(11), 525-527. doi:10.1007/bf01141957 es_ES
dc.description.references Sch�tz, K., Happe, T., Troshina, O., Lindblad, P., Leit�o, E., Oliveira, P., & Tamagnini, P. (2004). Cyanobacterial H2 production ? a comparative analysis. Planta, 218(3), 350-359. doi:10.1007/s00425-003-1113-5 es_ES
dc.description.references Sharma, S. S., Blattner, F. R., & Harcum, S. W. (2007). Recombinant protein production in an Escherichia coli reduced genome strain. Metabolic Engineering, 9(2), 133-141. doi:10.1016/j.ymben.2006.10.002 es_ES
dc.description.references Sharma, S. S., Campbell, J. W., Frisch, D., Blattner, F. R., & Harcum, S. W. (2007). Expression of two recombinant chloramphenicol acetyltransferase variants in highly reduced genomeEscherichia coli strains. Biotechnology and Bioengineering, 98(5), 1056-1070. doi:10.1002/bit.21491 es_ES
dc.description.references Shcolnick, S., Summerfield, T. C., Reytman, L., Sherman, L. A., & Keren, N. (2009). The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 and Its Relationship to Oxidative Stress. Plant Physiology, 150(4), 2045-2056. doi:10.1104/pp.109.141853 es_ES
dc.description.references Sherman, D. M., Troyan, T. A., & Sherman, L. A. (1994). Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes). Plant Physiology, 106(1), 251-262. doi:10.1104/pp.106.1.251 es_ES
dc.description.references Sjöholm, J., Oliveira, P., & Lindblad, P. (2007). Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120. Applied and Environmental Microbiology, 73(17), 5435-5446. doi:10.1128/aem.00756-07 es_ES
dc.description.references Stal, L. (1997). Fermentation in cyanobacteria. FEMS Microbiology Reviews, 21(2), 179-211. doi:10.1016/s0168-6445(97)00056-9 es_ES
dc.description.references Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171-205. doi:10.1128/mmbr.35.2.171-205.1971 es_ES
dc.description.references Stroebel, D., Choquet, Y., Popot, J.-L., & Picot, D. (2003). An atypical haem in the cytochrome b6f complex. Nature, 426(6965), 413-418. doi:10.1038/nature02155 es_ES
dc.description.references Summerfield, T. C., & Sherman, L. A. (2008). Global Transcriptional Response of the Alkali-Tolerant Cyanobacterium Synechocystis sp. Strain PCC 6803 to a pH 10 Environment. Applied and Environmental Microbiology, 74(17), 5276-5284. doi:10.1128/aem.00883-08 es_ES
dc.description.references Summerfield, T. C., Nagarajan, S., & Sherman, L. A. (2011). Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. Microbiology, 157(2), 301-312. doi:10.1099/mic.0.041053-0 es_ES
dc.description.references Suzuki, I. (2006). The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. Journal of Experimental Botany, 57(7), 1573-1578. doi:10.1093/jxb/erj148 es_ES
dc.description.references Tamagnini, P., Troshina, O., Oxelfelt, F., Salema, R., & Lindblad, P. (1997). Hydrogenases in Nostoc sp. Strain PCC 73102, a Strain Lacking a Bidirectional Enzyme. Applied and environmental microbiology, 63(5), 1801-1807. doi:10.1128/aem.63.5.1801-1807.1997 es_ES
dc.description.references Tamagnini, P., Costa, J.-L., Almeida, L., Oliveira, M.-J., Salema, R., & Lindblad, P. (2000). Diversity of Cyanobacterial Hydrogenases, a Molecular Approach. Current Microbiology, 40(6), 356-361. doi:10.1007/s002840010070 es_ES
dc.description.references Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and Hydrogen Metabolism of Cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1-20. doi:10.1128/mmbr.66.1.1-20.2002 es_ES
dc.description.references Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. J., … Lindblad, P. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiology Reviews, 31(6), 692-720. doi:10.1111/j.1574-6976.2007.00085.x es_ES
dc.description.references TROSHINA, O. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11-12), 1283-1289. doi:10.1016/s0360-3199(02)00103-9 es_ES
dc.description.references Ushimaru, T., Nishiyama, Y., Hayashi, H., & Murata, N. (2002). No coordinated transcriptional regulation of the sod-kat antioxidative system in Synechocystis sp. PCC 6803. Journal of Plant Physiology, 159(7), 805-807. doi:10.1078/0176-1617-0812 es_ES
dc.description.references Van der Oost, J., Bulthuis, B. A., Feitz, S., Krab, K., & Kraayenhof, R. (1989). Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Archives of Microbiology, 152(5), 415-419. doi:10.1007/bf00446921 es_ES
dc.description.references Vila-Sanjurjo, A., Schuwirth, B.-S., Hau, C. W., & Cate, J. H. D. (2004). Structural basis for the control of translation initiation during stress. Nature Structural & Molecular Biology, 11(11), 1054-1059. doi:10.1038/nsmb850 es_ES
dc.description.references Vinnemeier, J., Kunert, A., & Hagemann, M. (1998). Transcriptional analysis of theisiABoperon in salt-stressed cells of the cyanobacteriumSynechocystissp. PCC 6803. FEMS Microbiology Letters, 169(2), 323-330. doi:10.1111/j.1574-6968.1998.tb13336.x es_ES
dc.description.references Williams, J. G. K. (1988). [85] Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Cyanobacteria, 766-778. doi:10.1016/0076-6879(88)67088-1 es_ES
dc.description.references Xu, W., & McFadden, B. A. (1997). Sequence Analysis of Plasmid pCC5.2 from CyanobacteriumSynechocystisPCC 6803 That Replicates by a Rolling Circle Mechanism. Plasmid, 37(2), 95-104. doi:10.1006/plas.1997.1281 es_ES
dc.description.references Yadav, V. G., & Stephanopoulos, G. (2010). Reevaluating synthesis by biology. Current Opinion in Microbiology, 13(3), 371-376. doi:10.1016/j.mib.2010.04.002 es_ES
dc.description.references Yang, X., & McFadden, B. A. (1993). A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism. Journal of Bacteriology, 175(13), 3981-3991. doi:10.1128/jb.175.13.3981-3991.1993 es_ES
dc.description.references Yang, X., & McFadden, B. A. (1994). The Complete DNA Sequence and Replication Analysis of the Plasmid pCB2.4 from the Cyanobacterium Synechocystis PCC 6803. Plasmid, 31(2), 131-137. doi:10.1006/plas.1994.1014 es_ES
dc.description.references Zhang, Z., Pendse, N. D., Phillips, K. N., Cotner, J. B., & Khodursky, A. (2008). Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics, 9(1), 344. doi:10.1186/1471-2164-9-344 es_ES


This item appears in the following Collection(s)

Show simple item record