- -

Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks

Mostrar el registro completo del ítem

Sprott, MR.; Gallego-Ferrer, G.; Dalby, MJ.; Salmerón Sánchez, M.; Cantini, M. (2019). Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials (Online). 8(3):1-12. https://doi.org/10.1002/adhm.201801469

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151103

Ficheros en el ítem

Metadatos del ítem

Título: Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks
Autor: Sprott, Mark Robert Gallego-Ferrer, Gloria Dalby, Matthew J. Salmerón Sánchez, Manuel Cantini, Marco
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Poly-l-lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently ...[+]
Palabras clave: Biomimetics , Cell differentiation , Fibronectin , SI-ATRP , Surface modification
Derechos de uso: Reconocimiento (by)
Fuente:
Advanced Healthcare Materials (Online). (eissn: 2192-2659 )
DOI: 10.1002/adhm.201801469
Editorial:
Wiley-VCH
Versión del editor: https://doi.org/10.1002/adhm.201801469
Código del Proyecto:
info:eu-repo/grantAgreement/UKRI//EP%2FF500424%2F1/GB/LSI Doctoral Training Centres - Doctoral Training Centre in Cell & Proteomic Technologies/
info:eu-repo/grantAgreement/UKRI//MR%2FS005412%2F1/GB/Engineered microenvironments to harvest stem cell response to viscosity for cartilage repair/
info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/
Agradecimientos:
The authors acknowledge the EPSRC (EP/P001114/1) and MRC (MR/S005412/1) funding. The authors also acknowledge the EPSRC funding as part of the Doctoral Training Centre EP/F500424/1. This work was also funded by a grant ...[+]
Tipo: Artículo

References

A. J. Rincon Lasprilla G. A. Rueda Martinez B. H. Lunelli J. E. Jaimes Figueroa A. L. Jardini R. Maciel Filho Chem. Eng. Trans 2011 985

Khan, F., Tanaka, M., & Ahmad, S. R. (2015). Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 3(42), 8224-8249. doi:10.1039/c5tb01370d

Xu, F. J., Yang, X. C., Li, C. Y., & Yang, W. T. (2011). Functionalized Polylactide Film Surfaces via Surface-Initiated ATRP. Macromolecules, 44(7), 2371-2377. doi:10.1021/ma200160h [+]
A. J. Rincon Lasprilla G. A. Rueda Martinez B. H. Lunelli J. E. Jaimes Figueroa A. L. Jardini R. Maciel Filho Chem. Eng. Trans 2011 985

Khan, F., Tanaka, M., & Ahmad, S. R. (2015). Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 3(42), 8224-8249. doi:10.1039/c5tb01370d

Xu, F. J., Yang, X. C., Li, C. Y., & Yang, W. T. (2011). Functionalized Polylactide Film Surfaces via Surface-Initiated ATRP. Macromolecules, 44(7), 2371-2377. doi:10.1021/ma200160h

Khan, F., & Tanaka, M. (2017). Designing Smart Biomaterials for Tissue Engineering. International Journal of Molecular Sciences, 19(1), 17. doi:10.3390/ijms19010017

Zhao, P., Gu, H., Mi, H., Rao, C., Fu, J., & Turng, L. (2017). Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering, 13(1), 107-119. doi:10.1007/s11465-018-0496-8

Zou, Y., Zhang, L., Yang, L., Zhu, F., Ding, M., Lin, F., … Li, Y. (2018). «Click» chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 273, 160-179. doi:10.1016/j.jconrel.2018.01.023

Pyun, J., Kowalewski, T., & Matyjaszewski, K. (2005). Polymer Brushes by Atom Transfer Radical Polymerization. Polymer Brushes, 51-68. doi:10.1002/3527603824.ch2

Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., & Kusumo, A. (2007). Grafting from Surfaces for «Everyone»:  ARGET ATRP in the Presence of Air. Langmuir, 23(8), 4528-4531. doi:10.1021/la063402e

Datta, H., Bhowmick, A. K., & Singha, N. K. (2008). Tailor-made hybrid nanostructure of poly(ethyl acrylate)/clay by surface-initiated atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 46(15), 5014-5027. doi:10.1002/pola.22829

Simakova, A., Averick, S. E., Konkolewicz, D., & Matyjaszewski, K. (2012). Aqueous ARGET ATRP. Macromolecules, 45(16), 6371-6379. doi:10.1021/ma301303b

Siegwart, D. J., Oh, J. K., & Matyjaszewski, K. (2012). ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science, 37(1), 18-37. doi:10.1016/j.progpolymsci.2011.08.001

Liu, P., & Su, Z. (2005). Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate from starch granules. Carbohydrate Polymers, 62(2), 159-163. doi:10.1016/j.carbpol.2005.07.018

Yu, Q., Johnson, L. M., & López, G. P. (2014). Nanopatterned Polymer Brushes for Triggered Detachment of Anchorage-Dependent Cells. Advanced Functional Materials, 24(24), 3751-3759. doi:10.1002/adfm.201304274

Zhu, A., Zhang, M., Wu, J., & Shen, J. (2002). Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials, 23(23), 4657-4665. doi:10.1016/s0142-9612(02)00215-6

Matyjaszewski, K. (2012). Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 45(10), 4015-4039. doi:10.1021/ma3001719

Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering, 10(1-2), 53-61. doi:10.1089/107632704322791691

Tsuji, H., Ogiwara, M., Saha, S. K., & Sakaki, T. (2006). Enzymatic, Alkaline, and Autocatalytic Degradation of Poly(l-lactic acid):  Effects of Biaxial Orientation. Biomacromolecules, 7(1), 380-387. doi:10.1021/bm0507453

He, Y., Wang, W., & Ding, J. (2013). Effects of L-lactic acid and D,L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. Chinese Science Bulletin, 58(20), 2404-2411. doi:10.1007/s11434-013-5798-y

M. Cantini C. González‐García V. Llopis‐Hernández M. Salmerón‐Sánchez T. Horbett J. L. Brash W. Norde Proteins at Interfaces III State of the Art ACS Symposium Series 2012 American Chemical Society Washington DC USA 471 496

Llopis-Hernández, V., Rico, P., Moratal, D., Altankov, G., & Salmerón-Sánchez, M. (2013). Role of Material-Driven Fibronectin Fibrillogenesis in Protein Remodeling. BioResearch Open Access, 2(5), 364-373. doi:10.1089/biores.2013.0017

Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057

Vanterpool, F. A., Cantini, M., Seib, F. P., & Salmerón-Sánchez, M. (2014). A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 3(6), 286-296. doi:10.1089/biores.2014.0033

Bathawab, F., Bennett, M., Cantini, M., Reboud, J., Dalby, M. J., & Salmerón-Sánchez, M. (2016). Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 32(3), 800-809. doi:10.1021/acs.langmuir.5b03259

Lozano Picazo, P., Pérez Garnes, M., Martínez Ramos, C., Vallés-Lluch, A., & Monleón Pradas, M. (2014). New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience, 15(2), 229-240. doi:10.1002/mabi.201400331

Schulz, A. S., Gojzewski, H., Huskens, J., Vos, W. L., & Julius Vancso, G. (2017). Controlled sub-10-nanometer poly(N -isopropyl-acrylamide) layers grafted from silicon by atom transfer radical polymerization. Polymers for Advanced Technologies, 29(2), 806-813. doi:10.1002/pat.4187

Müllner, M., Dodds, S. J., Nguyen, T.-H., Senyschyn, D., Porter, C. J. H., Boyd, B. J., & Caruso, F. (2015). Size and Rigidity of Cylindrical Polymer Brushes Dictate Long Circulating Properties In Vivo. ACS Nano, 9(2), 1294-1304. doi:10.1021/nn505125f

Kreyling, W. G., Abdelmonem, A. M., Ali, Z., Alves, F., Geiser, M., Haberl, N., … Parak, W. J. (2015). In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 10(7), 619-623. doi:10.1038/nnano.2015.111

Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059

Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785

Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(8), 2506-2519. doi:10.1016/j.bbagen.2014.01.010

Hay, J. J., Rodrigo-Navarro, A., Hassi, K., Moulisova, V., Dalby, M. J., & Salmeron-Sanchez, M. (2016). Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Scientific Reports, 6(1). doi:10.1038/srep21809

Zhu, Y., Gao, C., Liu, X., & Shen, J. (2002). Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells. Biomacromolecules, 3(6), 1312-1319. doi:10.1021/bm020074y

MacDonald, R. T., McCarthy, S. P., & Gross, R. A. (1996). Enzymatic Degradability of Poly(lactide):  Effects of Chain Stereochemistry and Material Crystallinity. Macromolecules, 29(23), 7356-7361. doi:10.1021/ma960513j

Tokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology, 72(2), 244-251. doi:10.1007/s00253-006-0488-1

Hu, X., Su, T., Li, P., & Wang, Z. (2017). Blending modification of PBS/PLA and its enzymatic degradation. Polymer Bulletin, 75(2), 533-546. doi:10.1007/s00289-017-2054-7

Gee, E. P. S., Yüksel, D., Stultz, C. M., & Ingber, D. E. (2013). SLLISWD Sequence in the 10FNIII Domain Initiates Fibronectin Fibrillogenesis. Journal of Biological Chemistry, 288(29), 21329-21340. doi:10.1074/jbc.m113.462077

Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3

Dalby, M. J., Gadegaard, N., & Oreffo, R. O. C. (2014). Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558-569. doi:10.1038/nmat3980

Neděla, O., Slepička, P., & Švorčík, V. (2017). Surface Modification of Polymer Substrates for Biomedical Applications. Materials, 10(10), 1115. doi:10.3390/ma10101115

Ngandu Mpoyi, E., Cantini, M., Reynolds, P. M., Gadegaard, N., Dalby, M. J., & Salmerón-Sánchez, M. (2016). Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 10(7), 6638-6647. doi:10.1021/acsnano.6b01649

Cantini, M., Rico, P., Moratal, D., & Salmerón-Sánchez, M. (2012). Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter, 8(20), 5575. doi:10.1039/c2sm25413a

Chu, P. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5-6), 143-206. doi:10.1016/s0927-796x(02)00004-9

Zoppe, J. O., Ataman, N. C., Mocny, P., Wang, J., Moraes, J., & Klok, H.-A. (2017). Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews, 117(3), 1105-1318. doi:10.1021/acs.chemrev.6b00314

Yasuda, H., & Yasuda, T. (2000). The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment. Journal of Polymer Science Part A: Polymer Chemistry, 38(6), 943-953. doi:10.1002/(sici)1099-0518(20000315)38:6<943::aid-pola3>3.0.co;2-3

Ma, H., Textor, M., Clark, R. L., & Chilkoti, A. (2006). Monitoring kinetics of surface initiated atom transfer radical polymerization by quartz crystal microbalance with dissipation. Biointerphases, 1(1), 35-39. doi:10.1116/1.2190697

Ohno, S., & Matyjaszewski, K. (2006). Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. Journal of Polymer Science Part A: Polymer Chemistry, 44(19), 5454-5467. doi:10.1002/pola.21669

Kang, C., Crockett, R. M., & Spencer, N. D. (2013). Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces. Macromolecules, 47(1), 269-275. doi:10.1021/ma401951w

Xiao, D., & Wirth, M. J. (2002). Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules, 35(8), 2919-2925. doi:10.1021/ma011313x

Shinoda, H., & Matyjaszewski, K. (2001). Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). Macromolecules, 34(18), 6243-6248. doi:10.1021/ma0105791

Xu, F. J., Zhao, J. P., Kang, E. T., & Neoh, K. G. (2007). Surface Functionalization of Polyimide Films via Chloromethylation and Surface-Initiated Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 46(14), 4866-4873. doi:10.1021/ie0701367

Zhou, T., Qi, H., Han, L., Barbash, D., & Li, C. Y. (2016). Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nature Communications, 7(1). doi:10.1038/ncomms11119

Guo, W., Zhu, J., Cheng, Z., Zhang, Z., & Zhu, X. (2011). Anticoagulant Surface of 316 L Stainless Steel Modified by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & Interfaces, 3(5), 1675-1680. doi:10.1021/am200215x

Ignatova, M., Voccia, S., Gilbert, B., Markova, N., Mercuri, P. S., Galleni, M., … Jérôme, C. (2004). Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir, 20(24), 10718-10726. doi:10.1021/la048347t

Taran, E., Donose, B., Higashitani, K., Asandei, A. D., Scutaru, D., & Hurduc, N. (2006). ATRP grafting of styrene from benzyl chloride functionalized polysiloxanes: An AFM and TGA study of the Cu(0)/bpy catalyst. European Polymer Journal, 42(1), 119-125. doi:10.1016/j.eurpolymj.2005.06.030

Liu, F., Du, C.-H., Zhu, B.-K., & Xu, Y.-Y. (2007). Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer, 48(10), 2910-2918. doi:10.1016/j.polymer.2007.03.033

Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259

Saito, E., Liao, E. E., Hu, W., Krebsbach, P. H., & Hollister, S. J. (2011). Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. Journal of Tissue Engineering and Regenerative Medicine, 7(2), 99-111. doi:10.1002/term.497

Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 6(1). doi:10.1038/srep20770

Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 95(11), 2126-2146. doi:10.1016/j.polymdegradstab.2010.06.007

Cantini, M., Gomide, K., Moulisova, V., González-García, C., & Salmerón-Sánchez, M. (2017). Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks. Advanced Biosystems, 1(9), 1700047. doi:10.1002/adbi.201700047

Pelta, J., Berry, H., Fadda, G. C., Pauthe, E., & Lairez, D. (2000). Statistical Conformation of Human Plasma Fibronectin. Biochemistry, 39(17), 5146-5154. doi:10.1021/bi992770x

Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203

P. Rico Tortosa M. Cantini G. Altankov M. Salmeron‐Sanchez M. Monleón Pradas M. J. Vicent Polymers in Regenerative Medicine: Biomedical Applications from Nano‐ to Macro‐Structures 2014 John Wiley & Sons Inc Hoboken New Jersey 91 146

Schwarzbauer, J. E., & DeSimone, D. W. (2011). Fibronectins, Their Fibrillogenesis, and In Vivo Functions. Cold Spring Harbor Perspectives in Biology, 3(7), a005041-a005041. doi:10.1101/cshperspect.a005041

Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., … Hubbell, J. A. (2011). Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 3(100), 100ra89-100ra89. doi:10.1126/scitranslmed.3002614

Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537

Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062

Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102

Llopis-Hernández, V., Cantini, M., González-García, C., Cheng, Z. A., Yang, J., Tsimbouri, P. M., … Salmerón-Sánchez, M. (2016). Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2(8), e1600188. doi:10.1126/sciadv.1600188

Ballester-Beltrán, J., Moratal, D., Lebourg, M., & Salmerón-Sánchez, M. (2014). Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate. Biomater. Sci., 2(3), 381-389. doi:10.1039/c3bm60248f

Redick, S. D., Settles, D. L., Briscoe, G., & Erickson, H. P. (2000). Defining Fibronectin’s Cell Adhesion Synergy Site by Site-Directed Mutagenesis. Journal of Cell Biology, 149(2), 521-527. doi:10.1083/jcb.149.2.521

Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224

Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378-379. doi:10.1038/nsmb908

Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., & Sellers, J. R. (2004). Mechanism of Blebbistatin Inhibition of Myosin II. Journal of Biological Chemistry, 279(34), 35557-35563. doi:10.1074/jbc.m405319200

Cai, Y., Rossier, O., Gauthier, N. C., Biais, N., Fardin, M.-A., Zhang, X., … Sheetz, M. P. (2010). Cytoskeletal coherence requires myosin-IIA contractility. Journal of Cell Science, 123(3), 413-423. doi:10.1242/jcs.058297

González-García, C., Moratal, D., Oreffo, R. O. C., Dalby, M. J., & Salmerón-Sánchez, M. (2012). Surface mobility regulates skeletal stem cell differentiation. Integrative Biology, 4(5), 531. doi:10.1039/c2ib00139j

Horzum, U., Ozdil, B., & Pesen-Okvur, D. (2014). Step-by-step quantitative analysis of focal adhesions. MethodsX, 1, 56-59. doi:10.1016/j.mex.2014.06.004

Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018

Leahy, D. J., Aukhil, I., & Erickson, H. P. (1996). 2.0 Å Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region. Cell, 84(1), 155-164. doi:10.1016/s0092-8674(00)81002-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem