- -

A computational technique to predict the level of glucose of a diabetic patient with uncertainty in the short term

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A computational technique to predict the level of glucose of a diabetic patient with uncertainty in the short term

Mostrar el registro completo del ítem

Burgos Simon, C.; Cervigón, C.; Hidalgo, J.; Villanueva Micó, RJ. (2019). A computational technique to predict the level of glucose of a diabetic patient with uncertainty in the short term. Computational and Mathematical Methods. 2(2):1-11. https://doi.org/10.1002/cmm4.1064

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151156

Ficheros en el ítem

Metadatos del ítem

Título: A computational technique to predict the level of glucose of a diabetic patient with uncertainty in the short term
Autor: Burgos Simon, Clara Cervigón, Carlos Hidalgo, José-Ignacio Villanueva Micó, Rafael Jacinto
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Fecha difusión:
Resumen:
[EN] On advanced stages of the disease, diabetic patients have to inject insulin doses to maintain blood glucose levels inside of a healthy range. The decision of how much insulin is injected implies somehow to predict the ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational and Mathematical Methods. (eissn: 2577-7408 )
DOI: 10.1002/cmm4.1064
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cmm4.1064
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095180-B-I00/ES/SISTEMA ADAPTATIVO BIOINSPIRADO PARA EL CONTROL GLUCEMICO BASADO EN SENSORES Y ACCESORIOS INTELIGENTES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work has been partially supported by the Spanish Ministerio de Economía y Competitividad under grant MTM2017-89664-P and RTI2018-095180-B-I00 and by Fundación Eugenio Rodriguez Pascual 2019 -GLENO Project
Tipo: Artículo

References

(2004). Third-Party Reimbursement for Diabetes Care, Self-Management Education, and Supplies. Diabetes Care, 28(Supplement 1), S62-S63. doi:10.2337/diacare.28.suppl_1.s62

Bloomgarden, Z. T. (2004). Consequences of Diabetes: Cardiovascular disease. Diabetes Care, 27(7), 1825-1831. doi:10.2337/diacare.27.7.1825

BrownA.Time‐in‐range: what's an achievable goal with diabetes?2017.https://diatribe.org/time-range-whats-achievable-goal-diabetes [+]
(2004). Third-Party Reimbursement for Diabetes Care, Self-Management Education, and Supplies. Diabetes Care, 28(Supplement 1), S62-S63. doi:10.2337/diacare.28.suppl_1.s62

Bloomgarden, Z. T. (2004). Consequences of Diabetes: Cardiovascular disease. Diabetes Care, 27(7), 1825-1831. doi:10.2337/diacare.27.7.1825

BrownA.Time‐in‐range: what's an achievable goal with diabetes?2017.https://diatribe.org/time-range-whats-achievable-goal-diabetes

Fonseca, V. A., Grunberger, G., Anhalt, H., Bailey, T. S., Blevins, T., … Garg, S. K. (2016). CONTINUOUS GLUCOSE MONITORING: A CONSENSUS CONFERENCE OF THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY. Endocrine Practice, 22(8), 1008-1021. doi:10.4158/ep161392.cs

Christiansen, M. P., Klaff, L. J., Brazg, R., Chang, A. R., Levy, C. J., Lam, D., … Bailey, T. S. (2018). A Prospective Multicenter Evaluation of the Accuracy of a Novel Implanted Continuous Glucose Sensor: PRECISE II. Diabetes Technology & Therapeutics, 20(3), 197-206. doi:10.1089/dia.2017.0142

Bock, A., François, G., & Gillet, D. (2015). A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes. Computer Methods and Programs in Biomedicine, 118(2), 107-123. doi:10.1016/j.cmpb.2014.12.002

Acedo, L., Botella, M., Cortés, J. C., Hidalgo, J. I., Maqueda, E., & Villanueva, R. J. (2018). Swarm hybrid optimization for a piecewise model fitting applied to a glucose model. Journal of Systems and Information Technology, 20(4), 404-416. doi:10.1108/jsit-10-2017-0103

Alegre-Sanahuja, J., Cortés, J.-C., Villanueva, R.-J., & Santonja, F.-J. (2017). Predicting mobile apps spread: An epidemiological random network modeling approach. SIMULATION, 94(2), 123-130. doi:10.1177/0037549717712600

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem