- -

A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation

Show full item record

Pérez Jiménez, AJ.; Gonzalez-Peña, RJ.; Braga, RJ.; Perles Ivars, A.; Pérez Marín, E.; García Diego, FJ. (2018). A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation. Sensors. 18(1):1-13. https://doi.org/10.3390/s18010190

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151161

Files in this item

Item Metadata

Title: A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation
Author: Pérez Jiménez, Alberto José Gonzalez-Peña, Rolando J. Braga, Roberto, Jr. Perles Ivars, Angel Pérez Marín, Eva García Diego, Fernando Juan
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals
Issued date:
Abstract:
[EN] Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for ...[+]
Subjects: Dynamic speckle , Activity , Temporal history speckle pattern , Varnish , Cyclododecane
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s18010190
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s18010190
Project ID:
info:eu-repo/grantAgreement/MINECO//HAR2013-47895-C2-1-P/ES/CONSERVACION PREVENTIVA DE LOS MOSAICOS ROMANOS DE LA VILLA ROMANA DE NOHEDA (CUENCA), DEL LUGAR ARQUELOGICO DE L¿ALMOINA (VALENCIA) Y OTROS./
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F058/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/HAR2017-85557-P/ES/UTILIZACION DE TECNOLOGIAS IOT PARA LA APLICACION DE NORMAS EUROPEAS DE CONSERVACION PREVENTIVA. USO EN PEQUEÑAS Y MEDIANAS COLECCIONES DEL PATRIMONIO CULTURAL ESPAÑOL/
Thanks:
This work was partially funded by Generalitat Valenciana project AICO/2016/058 and by the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) under the project HAR2013-47895-C2-1-P and ...[+]
Type: Artículo

References

Kim, M. K. (2010). Principles and techniques of digital holographic microscopy. Journal of Photonics for Energy, 018005. doi:10.1117/6.0000006

Yokota, M., Kawakami, T., Kimoto, Y., & Yamaguchi, I. (2011). Drying process in a solvent-based paint analyzed by phase-shifting digital holography and an estimation of time for tack free. Applied Optics, 50(30), 5834. doi:10.1364/ao.50.005834

Yamaguchi, I., Ida, T., Yokota, M., & Kobayashi, K. (2007). Monitoring of Paint Drying Process by Phase-shifting Digital Holography. Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM. doi:10.1364/dh.2007.dwc2 [+]
Kim, M. K. (2010). Principles and techniques of digital holographic microscopy. Journal of Photonics for Energy, 018005. doi:10.1117/6.0000006

Yokota, M., Kawakami, T., Kimoto, Y., & Yamaguchi, I. (2011). Drying process in a solvent-based paint analyzed by phase-shifting digital holography and an estimation of time for tack free. Applied Optics, 50(30), 5834. doi:10.1364/ao.50.005834

Yamaguchi, I., Ida, T., Yokota, M., & Kobayashi, K. (2007). Monitoring of Paint Drying Process by Phase-shifting Digital Holography. Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM. doi:10.1364/dh.2007.dwc2

Krzemień, L., Łukomski, M., Kijowska, A., & Mierzejewska, B. (2015). Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts. Journal of Cultural Heritage, 16(4), 544-550. doi:10.1016/j.culher.2014.10.006

Trumpy, G., Conover, D., Simonot, L., Thoury, M., Picollo, M., & Delaney, J. K. (2015). Experimental study on merits of virtual cleaning of paintings with aged varnish. Optics Express, 23(26), 33836. doi:10.1364/oe.23.033836

Reifsnyder, J. M. (1996). A note on a traditional technique of varnish application for paintings on panel. Studies in Conservation, 41(2), 120-122. doi:10.1179/sic.1996.41.2.120

Caley, T. (1990). ASPECTS OF VARNISHES AND THE CLEANING OF OIL PAINTINGS BEFORE 1700. Studies in Conservation, 35(sup1), 70-72. doi:10.1179/sic.1990.35.s1.016

Bruckle, I., Thornton, J., Nichols, K., & Strickler, G. (1999). Cyclododecane: Technical Note on Some Uses in Paper and Objects Conservation. Journal of the American Institute for Conservation, 38(2), 162. doi:10.2307/3180044

Rowe, S., & Rozeik, C. (2008). The uses of cyclododecane in conservation. Studies in Conservation, 53(sup2), 17-31. doi:10.1179/sic.2008.53.supplement-2.17

Maish, J. P., & Risser, E. (2002). A Case Study in the Use of Cyclododecane and Latex Rubber in the Molding of Marble. Journal of the American Institute for Conservation, 41(2), 127. doi:10.2307/3179789

Lenk, R. S., Fellers, J. F., & White, J. L. (1977). Comparative Study of Polyamides from Bisacid A2. Polymer Journal, 9(1), 9-17. doi:10.1295/polymj.9.9

Carvalho, P. H. A., Barreto, J. B., Braga, R. A., & Rabelo, G. F. (2009). Motility parameters assessment of bovine frozen semen by biospeckle laser (BSL) system. Biosystems Engineering, 102(1), 31-35. doi:10.1016/j.biosystemseng.2008.09.025

Richards, L. M., Kazmi, S. M. S., Davis, J. L., Olin, K. E., & Dunn, A. K. (2013). Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomedical Optics Express, 4(10), 2269. doi:10.1364/boe.4.002269

Ganilova, Y. A., & Ulyanov, S. S. (2006). A study of blood flow in microvessels using biospeckle dynamics. Biophysics, 51(2), 299-304. doi:10.1134/s0006350906020230

Murialdo, S. E., Sendra, G. H., Passoni, L. I., Arizaga, R., Gonzalez, J. F., Rabal, H., & Trivi, M. (2009). Analysis of bacterial chemotactic response using dynamic laser speckle. Journal of Biomedical Optics, 14(6), 064015. doi:10.1117/1.3262608

González-Peña, R. J., Braga, R. A., Cibrián, R. M., Salvador-Palmer, R., Gil-Benso, R., & Miguel, T. S. (2014). Monitoring of the action of drugs in melanoma cells by dynamic laser speckle. Journal of Biomedical Optics, 19(5), 057008. doi:10.1117/1.jbo.19.5.057008

Arizaga, R., Grumel, E. E., Cap, N., Trivi, M., Amalvy, J. I., Yepes, B., & Ricaurte, G. (2006). Following the drying of spray paints using space and time contrast of dynamic speckle. Journal of Coatings Technology and Research, 3(4), 295-299. doi:10.1007/s11998-006-0025-2

Faccia, P. A., Pardini, O. R., Amalvy, J. I., Cap, N., Grumel, E. E., Arizaga, R., & Trivi, M. (2009). Differentiation of the drying time of paints by dynamic speckle interferometry. Progress in Organic Coatings, 64(4), 350-355. doi:10.1016/j.porgcoat.2008.07.016

Mavilio, A., Fernández, M., Trivi, M., Rabal, H., & Arizaga, R. (2010). Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns. Signal Processing, 90(5), 1623-1630. doi:10.1016/j.sigpro.2009.11.010

Budini, N., Mulone, C., Balducci, N., Vincitorio, F. M., López, A. J., & Ramil, A. (2016). Characterization of drying paint coatings by dynamic speckle and holographic interferometry measurements. Applied Optics, 55(17), 4706. doi:10.1364/ao.55.004706

Brunel, L., Brun, A., & Snabre, P. (2006). Microstructure movements study by dynamic speckle analysis. Speckle06: Speckles, From Grains to Flowers. doi:10.1117/12.695493

Braga, R. A., & González-Peña, R. J. (2016). Accuracy in dynamic laser speckle: optimum size of speckles for temporal and frequency analyses. Optical Engineering, 55(12), 121702. doi:10.1117/1.oe.55.12.121702

Moreira, J., Cardoso, R. R., & Braga, R. A. (2014). Quality test protocol to dynamic laser speckle analysis. Optics and Lasers in Engineering, 61, 8-13. doi:10.1016/j.optlaseng.2014.04.005

Ansari, M. Z., & Nirala, A. K. (2016). Biospeckle numerical assessment followed by speckle quality tests. Optik, 127(15), 5825-5833. doi:10.1016/j.ijleo.2016.04.010

Oulamara, A., Tribillon, G., & Duvernoy, J. (1989). Biological Activity Measurement on Botanical Specimen Surfaces Using a Temporal Decorrelation Effect of Laser Speckle. Journal of Modern Optics, 36(2), 165-179. doi:10.1080/09500348914550221

Braga, R. A., Nobre, C. M. B., Costa, A. G., Sáfadi, T., & da Costa, F. M. (2011). Evaluation of activity through dynamic laser speckle using the absolute value of the differences. Optics Communications, 284(2), 646-650. doi:10.1016/j.optcom.2010.09.064

Narita, T., Beauvais, C., Hébraud, P., & Lequeux, F. (2004). Dynamics of concentrated colloidal suspensions during drying --aging, rejuvenation and overaging. The European Physical Journal E, 14(3), 287-292. doi:10.1140/epje/i2004-10018-0

Puspasari, I., Talib, M. Z. M., Daud, W. R. W., & Tasirin, S. M. (2014). Characteristic Drying Curve of Oil Palm Fibers. International Journal on Advanced Science, Engineering and Information Technology, 4(1), 20. doi:10.18517/ijaseit.4.1.361

Bellagha, S., Amami, E., Farhat, A., & Kechaou, N. (2002). DRYING KINETICS AND CHARACTERISTIC DRYING CURVE OF LIGHTLY SALTED SARDINE (SARDINELLA AURITA). Drying Technology, 20(7), 1527-1538. doi:10.1081/drt-120005866

Van der Kooij, H. M., Fokkink, R., van der Gucht, J., & Sprakel, J. (2016). Quantitative imaging of heterogeneous dynamics in drying and aging paints. Scientific Reports, 6(1). doi:10.1038/srep34383

Vaz, P., Pereira, T., Figueiras, E., Correia, C., Humeau-Heurtier, A., & Cardoso, J. (2016). Which wavelength is the best for arterial pulse waveform extraction using laser speckle imaging? Biomedical Signal Processing and Control, 25, 188-195. doi:10.1016/j.bspc.2015.11.013

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record