- -

A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez Jiménez, Alberto José es_ES
dc.contributor.author Gonzalez-Peña, Rolando J. es_ES
dc.contributor.author Braga, Roberto, Jr. es_ES
dc.contributor.author Perles Ivars, Angel es_ES
dc.contributor.author Pérez Marín, Eva es_ES
dc.contributor.author García Diego, Fernando Juan es_ES
dc.date.accessioned 2020-10-06T03:31:53Z
dc.date.available 2020-10-06T03:31:53Z
dc.date.issued 2018-01-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151161
dc.description.abstract [EN] Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation. es_ES
dc.description.sponsorship This work was partially funded by Generalitat Valenciana project AICO/2016/058 and by the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) under the project HAR2013-47895-C2-1-P and project HAR2017-85557-P es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dynamic speckle es_ES
dc.subject Activity es_ES
dc.subject Temporal history speckle pattern es_ES
dc.subject Varnish es_ES
dc.subject Cyclododecane es_ES
dc.subject.classification PINTURA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s18010190 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//HAR2013-47895-C2-1-P/ES/CONSERVACION PREVENTIVA DE LOS MOSAICOS ROMANOS DE LA VILLA ROMANA DE NOHEDA (CUENCA), DEL LUGAR ARQUELOGICO DE L¿ALMOINA (VALENCIA) Y OTROS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F058/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/HAR2017-85557-P/ES/UTILIZACION DE TECNOLOGIAS IOT PARA LA APLICACION DE NORMAS EUROPEAS DE CONSERVACION PREVENTIVA. USO EN PEQUEÑAS Y MEDIANAS COLECCIONES DEL PATRIMONIO CULTURAL ESPAÑOL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Pérez Jiménez, AJ.; Gonzalez-Peña, RJ.; Braga, RJ.; Perles Ivars, A.; Pérez Marín, E.; García Diego, FJ. (2018). A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation. Sensors. 18(1):1-13. https://doi.org/10.3390/s18010190 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s18010190 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 29324692 es_ES
dc.identifier.pmcid PMC5795523 es_ES
dc.relation.pasarela S\356771 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Kim, M. K. (2010). Principles and techniques of digital holographic microscopy. Journal of Photonics for Energy, 018005. doi:10.1117/6.0000006 es_ES
dc.description.references Yokota, M., Kawakami, T., Kimoto, Y., & Yamaguchi, I. (2011). Drying process in a solvent-based paint analyzed by phase-shifting digital holography and an estimation of time for tack free. Applied Optics, 50(30), 5834. doi:10.1364/ao.50.005834 es_ES
dc.description.references Yamaguchi, I., Ida, T., Yokota, M., & Kobayashi, K. (2007). Monitoring of Paint Drying Process by Phase-shifting Digital Holography. Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM. doi:10.1364/dh.2007.dwc2 es_ES
dc.description.references Krzemień, L., Łukomski, M., Kijowska, A., & Mierzejewska, B. (2015). Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts. Journal of Cultural Heritage, 16(4), 544-550. doi:10.1016/j.culher.2014.10.006 es_ES
dc.description.references Trumpy, G., Conover, D., Simonot, L., Thoury, M., Picollo, M., & Delaney, J. K. (2015). Experimental study on merits of virtual cleaning of paintings with aged varnish. Optics Express, 23(26), 33836. doi:10.1364/oe.23.033836 es_ES
dc.description.references Reifsnyder, J. M. (1996). A note on a traditional technique of varnish application for paintings on panel. Studies in Conservation, 41(2), 120-122. doi:10.1179/sic.1996.41.2.120 es_ES
dc.description.references Caley, T. (1990). ASPECTS OF VARNISHES AND THE CLEANING OF OIL PAINTINGS BEFORE 1700. Studies in Conservation, 35(sup1), 70-72. doi:10.1179/sic.1990.35.s1.016 es_ES
dc.description.references Bruckle, I., Thornton, J., Nichols, K., & Strickler, G. (1999). Cyclododecane: Technical Note on Some Uses in Paper and Objects Conservation. Journal of the American Institute for Conservation, 38(2), 162. doi:10.2307/3180044 es_ES
dc.description.references Rowe, S., & Rozeik, C. (2008). The uses of cyclododecane in conservation. Studies in Conservation, 53(sup2), 17-31. doi:10.1179/sic.2008.53.supplement-2.17 es_ES
dc.description.references Maish, J. P., & Risser, E. (2002). A Case Study in the Use of Cyclododecane and Latex Rubber in the Molding of Marble. Journal of the American Institute for Conservation, 41(2), 127. doi:10.2307/3179789 es_ES
dc.description.references Lenk, R. S., Fellers, J. F., & White, J. L. (1977). Comparative Study of Polyamides from Bisacid A2. Polymer Journal, 9(1), 9-17. doi:10.1295/polymj.9.9 es_ES
dc.description.references Carvalho, P. H. A., Barreto, J. B., Braga, R. A., & Rabelo, G. F. (2009). Motility parameters assessment of bovine frozen semen by biospeckle laser (BSL) system. Biosystems Engineering, 102(1), 31-35. doi:10.1016/j.biosystemseng.2008.09.025 es_ES
dc.description.references Richards, L. M., Kazmi, S. M. S., Davis, J. L., Olin, K. E., & Dunn, A. K. (2013). Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomedical Optics Express, 4(10), 2269. doi:10.1364/boe.4.002269 es_ES
dc.description.references Ganilova, Y. A., & Ulyanov, S. S. (2006). A study of blood flow in microvessels using biospeckle dynamics. Biophysics, 51(2), 299-304. doi:10.1134/s0006350906020230 es_ES
dc.description.references Murialdo, S. E., Sendra, G. H., Passoni, L. I., Arizaga, R., Gonzalez, J. F., Rabal, H., & Trivi, M. (2009). Analysis of bacterial chemotactic response using dynamic laser speckle. Journal of Biomedical Optics, 14(6), 064015. doi:10.1117/1.3262608 es_ES
dc.description.references González-Peña, R. J., Braga, R. A., Cibrián, R. M., Salvador-Palmer, R., Gil-Benso, R., & Miguel, T. S. (2014). Monitoring of the action of drugs in melanoma cells by dynamic laser speckle. Journal of Biomedical Optics, 19(5), 057008. doi:10.1117/1.jbo.19.5.057008 es_ES
dc.description.references Arizaga, R., Grumel, E. E., Cap, N., Trivi, M., Amalvy, J. I., Yepes, B., & Ricaurte, G. (2006). Following the drying of spray paints using space and time contrast of dynamic speckle. Journal of Coatings Technology and Research, 3(4), 295-299. doi:10.1007/s11998-006-0025-2 es_ES
dc.description.references Faccia, P. A., Pardini, O. R., Amalvy, J. I., Cap, N., Grumel, E. E., Arizaga, R., & Trivi, M. (2009). Differentiation of the drying time of paints by dynamic speckle interferometry. Progress in Organic Coatings, 64(4), 350-355. doi:10.1016/j.porgcoat.2008.07.016 es_ES
dc.description.references Mavilio, A., Fernández, M., Trivi, M., Rabal, H., & Arizaga, R. (2010). Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns. Signal Processing, 90(5), 1623-1630. doi:10.1016/j.sigpro.2009.11.010 es_ES
dc.description.references Budini, N., Mulone, C., Balducci, N., Vincitorio, F. M., López, A. J., & Ramil, A. (2016). Characterization of drying paint coatings by dynamic speckle and holographic interferometry measurements. Applied Optics, 55(17), 4706. doi:10.1364/ao.55.004706 es_ES
dc.description.references Brunel, L., Brun, A., & Snabre, P. (2006). Microstructure movements study by dynamic speckle analysis. Speckle06: Speckles, From Grains to Flowers. doi:10.1117/12.695493 es_ES
dc.description.references Braga, R. A., & González-Peña, R. J. (2016). Accuracy in dynamic laser speckle: optimum size of speckles for temporal and frequency analyses. Optical Engineering, 55(12), 121702. doi:10.1117/1.oe.55.12.121702 es_ES
dc.description.references Moreira, J., Cardoso, R. R., & Braga, R. A. (2014). Quality test protocol to dynamic laser speckle analysis. Optics and Lasers in Engineering, 61, 8-13. doi:10.1016/j.optlaseng.2014.04.005 es_ES
dc.description.references Ansari, M. Z., & Nirala, A. K. (2016). Biospeckle numerical assessment followed by speckle quality tests. Optik, 127(15), 5825-5833. doi:10.1016/j.ijleo.2016.04.010 es_ES
dc.description.references Oulamara, A., Tribillon, G., & Duvernoy, J. (1989). Biological Activity Measurement on Botanical Specimen Surfaces Using a Temporal Decorrelation Effect of Laser Speckle. Journal of Modern Optics, 36(2), 165-179. doi:10.1080/09500348914550221 es_ES
dc.description.references Braga, R. A., Nobre, C. M. B., Costa, A. G., Sáfadi, T., & da Costa, F. M. (2011). Evaluation of activity through dynamic laser speckle using the absolute value of the differences. Optics Communications, 284(2), 646-650. doi:10.1016/j.optcom.2010.09.064 es_ES
dc.description.references Narita, T., Beauvais, C., Hébraud, P., & Lequeux, F. (2004). Dynamics of concentrated colloidal suspensions during drying --aging, rejuvenation and overaging. The European Physical Journal E, 14(3), 287-292. doi:10.1140/epje/i2004-10018-0 es_ES
dc.description.references Puspasari, I., Talib, M. Z. M., Daud, W. R. W., & Tasirin, S. M. (2014). Characteristic Drying Curve of Oil Palm Fibers. International Journal on Advanced Science, Engineering and Information Technology, 4(1), 20. doi:10.18517/ijaseit.4.1.361 es_ES
dc.description.references Bellagha, S., Amami, E., Farhat, A., & Kechaou, N. (2002). DRYING KINETICS AND CHARACTERISTIC DRYING CURVE OF LIGHTLY SALTED SARDINE (SARDINELLA AURITA). Drying Technology, 20(7), 1527-1538. doi:10.1081/drt-120005866 es_ES
dc.description.references Van der Kooij, H. M., Fokkink, R., van der Gucht, J., & Sprakel, J. (2016). Quantitative imaging of heterogeneous dynamics in drying and aging paints. Scientific Reports, 6(1). doi:10.1038/srep34383 es_ES
dc.description.references Vaz, P., Pereira, T., Figueiras, E., Correia, C., Humeau-Heurtier, A., & Cardoso, J. (2016). Which wavelength is the best for arterial pulse waveform extraction using laser speckle imaging? Biomedical Signal Processing and Control, 25, 188-195. doi:10.1016/j.bspc.2015.11.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem