Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez Jiménez, Alberto José | es_ES |
dc.contributor.author | Gonzalez-Peña, Rolando J. | es_ES |
dc.contributor.author | Braga, Roberto, Jr. | es_ES |
dc.contributor.author | Perles Ivars, Angel | es_ES |
dc.contributor.author | Pérez Marín, Eva | es_ES |
dc.contributor.author | García Diego, Fernando Juan | es_ES |
dc.date.accessioned | 2020-10-06T03:31:53Z | |
dc.date.available | 2020-10-06T03:31:53Z | |
dc.date.issued | 2018-01-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151161 | |
dc.description.abstract | [EN] Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation. | es_ES |
dc.description.sponsorship | This work was partially funded by Generalitat Valenciana project AICO/2016/058 and by the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) under the project HAR2013-47895-C2-1-P and project HAR2017-85557-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Dynamic speckle | es_ES |
dc.subject | Activity | es_ES |
dc.subject | Temporal history speckle pattern | es_ES |
dc.subject | Varnish | es_ES |
dc.subject | Cyclododecane | es_ES |
dc.subject.classification | PINTURA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s18010190 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//HAR2013-47895-C2-1-P/ES/CONSERVACION PREVENTIVA DE LOS MOSAICOS ROMANOS DE LA VILLA ROMANA DE NOHEDA (CUENCA), DEL LUGAR ARQUELOGICO DE L¿ALMOINA (VALENCIA) Y OTROS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F058/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/HAR2017-85557-P/ES/UTILIZACION DE TECNOLOGIAS IOT PARA LA APLICACION DE NORMAS EUROPEAS DE CONSERVACION PREVENTIVA. USO EN PEQUEÑAS Y MEDIANAS COLECCIONES DEL PATRIMONIO CULTURAL ESPAÑOL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals | es_ES |
dc.description.bibliographicCitation | Pérez Jiménez, AJ.; Gonzalez-Peña, RJ.; Braga, RJ.; Perles Ivars, A.; Pérez Marín, E.; García Diego, FJ. (2018). A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation. Sensors. 18(1):1-13. https://doi.org/10.3390/s18010190 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s18010190 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 29324692 | es_ES |
dc.identifier.pmcid | PMC5795523 | es_ES |
dc.relation.pasarela | S\356771 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Kim, M. K. (2010). Principles and techniques of digital holographic microscopy. Journal of Photonics for Energy, 018005. doi:10.1117/6.0000006 | es_ES |
dc.description.references | Yokota, M., Kawakami, T., Kimoto, Y., & Yamaguchi, I. (2011). Drying process in a solvent-based paint analyzed by phase-shifting digital holography and an estimation of time for tack free. Applied Optics, 50(30), 5834. doi:10.1364/ao.50.005834 | es_ES |
dc.description.references | Yamaguchi, I., Ida, T., Yokota, M., & Kobayashi, K. (2007). Monitoring of Paint Drying Process by Phase-shifting Digital Holography. Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM. doi:10.1364/dh.2007.dwc2 | es_ES |
dc.description.references | Krzemień, L., Łukomski, M., Kijowska, A., & Mierzejewska, B. (2015). Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts. Journal of Cultural Heritage, 16(4), 544-550. doi:10.1016/j.culher.2014.10.006 | es_ES |
dc.description.references | Trumpy, G., Conover, D., Simonot, L., Thoury, M., Picollo, M., & Delaney, J. K. (2015). Experimental study on merits of virtual cleaning of paintings with aged varnish. Optics Express, 23(26), 33836. doi:10.1364/oe.23.033836 | es_ES |
dc.description.references | Reifsnyder, J. M. (1996). A note on a traditional technique of varnish application for paintings on panel. Studies in Conservation, 41(2), 120-122. doi:10.1179/sic.1996.41.2.120 | es_ES |
dc.description.references | Caley, T. (1990). ASPECTS OF VARNISHES AND THE CLEANING OF OIL PAINTINGS BEFORE 1700. Studies in Conservation, 35(sup1), 70-72. doi:10.1179/sic.1990.35.s1.016 | es_ES |
dc.description.references | Bruckle, I., Thornton, J., Nichols, K., & Strickler, G. (1999). Cyclododecane: Technical Note on Some Uses in Paper and Objects Conservation. Journal of the American Institute for Conservation, 38(2), 162. doi:10.2307/3180044 | es_ES |
dc.description.references | Rowe, S., & Rozeik, C. (2008). The uses of cyclododecane in conservation. Studies in Conservation, 53(sup2), 17-31. doi:10.1179/sic.2008.53.supplement-2.17 | es_ES |
dc.description.references | Maish, J. P., & Risser, E. (2002). A Case Study in the Use of Cyclododecane and Latex Rubber in the Molding of Marble. Journal of the American Institute for Conservation, 41(2), 127. doi:10.2307/3179789 | es_ES |
dc.description.references | Lenk, R. S., Fellers, J. F., & White, J. L. (1977). Comparative Study of Polyamides from Bisacid A2. Polymer Journal, 9(1), 9-17. doi:10.1295/polymj.9.9 | es_ES |
dc.description.references | Carvalho, P. H. A., Barreto, J. B., Braga, R. A., & Rabelo, G. F. (2009). Motility parameters assessment of bovine frozen semen by biospeckle laser (BSL) system. Biosystems Engineering, 102(1), 31-35. doi:10.1016/j.biosystemseng.2008.09.025 | es_ES |
dc.description.references | Richards, L. M., Kazmi, S. M. S., Davis, J. L., Olin, K. E., & Dunn, A. K. (2013). Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomedical Optics Express, 4(10), 2269. doi:10.1364/boe.4.002269 | es_ES |
dc.description.references | Ganilova, Y. A., & Ulyanov, S. S. (2006). A study of blood flow in microvessels using biospeckle dynamics. Biophysics, 51(2), 299-304. doi:10.1134/s0006350906020230 | es_ES |
dc.description.references | Murialdo, S. E., Sendra, G. H., Passoni, L. I., Arizaga, R., Gonzalez, J. F., Rabal, H., & Trivi, M. (2009). Analysis of bacterial chemotactic response using dynamic laser speckle. Journal of Biomedical Optics, 14(6), 064015. doi:10.1117/1.3262608 | es_ES |
dc.description.references | González-Peña, R. J., Braga, R. A., Cibrián, R. M., Salvador-Palmer, R., Gil-Benso, R., & Miguel, T. S. (2014). Monitoring of the action of drugs in melanoma cells by dynamic laser speckle. Journal of Biomedical Optics, 19(5), 057008. doi:10.1117/1.jbo.19.5.057008 | es_ES |
dc.description.references | Arizaga, R., Grumel, E. E., Cap, N., Trivi, M., Amalvy, J. I., Yepes, B., & Ricaurte, G. (2006). Following the drying of spray paints using space and time contrast of dynamic speckle. Journal of Coatings Technology and Research, 3(4), 295-299. doi:10.1007/s11998-006-0025-2 | es_ES |
dc.description.references | Faccia, P. A., Pardini, O. R., Amalvy, J. I., Cap, N., Grumel, E. E., Arizaga, R., & Trivi, M. (2009). Differentiation of the drying time of paints by dynamic speckle interferometry. Progress in Organic Coatings, 64(4), 350-355. doi:10.1016/j.porgcoat.2008.07.016 | es_ES |
dc.description.references | Mavilio, A., Fernández, M., Trivi, M., Rabal, H., & Arizaga, R. (2010). Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns. Signal Processing, 90(5), 1623-1630. doi:10.1016/j.sigpro.2009.11.010 | es_ES |
dc.description.references | Budini, N., Mulone, C., Balducci, N., Vincitorio, F. M., López, A. J., & Ramil, A. (2016). Characterization of drying paint coatings by dynamic speckle and holographic interferometry measurements. Applied Optics, 55(17), 4706. doi:10.1364/ao.55.004706 | es_ES |
dc.description.references | Brunel, L., Brun, A., & Snabre, P. (2006). Microstructure movements study by dynamic speckle analysis. Speckle06: Speckles, From Grains to Flowers. doi:10.1117/12.695493 | es_ES |
dc.description.references | Braga, R. A., & González-Peña, R. J. (2016). Accuracy in dynamic laser speckle: optimum size of speckles for temporal and frequency analyses. Optical Engineering, 55(12), 121702. doi:10.1117/1.oe.55.12.121702 | es_ES |
dc.description.references | Moreira, J., Cardoso, R. R., & Braga, R. A. (2014). Quality test protocol to dynamic laser speckle analysis. Optics and Lasers in Engineering, 61, 8-13. doi:10.1016/j.optlaseng.2014.04.005 | es_ES |
dc.description.references | Ansari, M. Z., & Nirala, A. K. (2016). Biospeckle numerical assessment followed by speckle quality tests. Optik, 127(15), 5825-5833. doi:10.1016/j.ijleo.2016.04.010 | es_ES |
dc.description.references | Oulamara, A., Tribillon, G., & Duvernoy, J. (1989). Biological Activity Measurement on Botanical Specimen Surfaces Using a Temporal Decorrelation Effect of Laser Speckle. Journal of Modern Optics, 36(2), 165-179. doi:10.1080/09500348914550221 | es_ES |
dc.description.references | Braga, R. A., Nobre, C. M. B., Costa, A. G., Sáfadi, T., & da Costa, F. M. (2011). Evaluation of activity through dynamic laser speckle using the absolute value of the differences. Optics Communications, 284(2), 646-650. doi:10.1016/j.optcom.2010.09.064 | es_ES |
dc.description.references | Narita, T., Beauvais, C., Hébraud, P., & Lequeux, F. (2004). Dynamics of concentrated colloidal suspensions during drying --aging, rejuvenation and overaging. The European Physical Journal E, 14(3), 287-292. doi:10.1140/epje/i2004-10018-0 | es_ES |
dc.description.references | Puspasari, I., Talib, M. Z. M., Daud, W. R. W., & Tasirin, S. M. (2014). Characteristic Drying Curve of Oil Palm Fibers. International Journal on Advanced Science, Engineering and Information Technology, 4(1), 20. doi:10.18517/ijaseit.4.1.361 | es_ES |
dc.description.references | Bellagha, S., Amami, E., Farhat, A., & Kechaou, N. (2002). DRYING KINETICS AND CHARACTERISTIC DRYING CURVE OF LIGHTLY SALTED SARDINE (SARDINELLA AURITA). Drying Technology, 20(7), 1527-1538. doi:10.1081/drt-120005866 | es_ES |
dc.description.references | Van der Kooij, H. M., Fokkink, R., van der Gucht, J., & Sprakel, J. (2016). Quantitative imaging of heterogeneous dynamics in drying and aging paints. Scientific Reports, 6(1). doi:10.1038/srep34383 | es_ES |
dc.description.references | Vaz, P., Pereira, T., Figueiras, E., Correia, C., Humeau-Heurtier, A., & Cardoso, J. (2016). Which wavelength is the best for arterial pulse waveform extraction using laser speckle imaging? Biomedical Signal Processing and Control, 25, 188-195. doi:10.1016/j.bspc.2015.11.013 | es_ES |