- -

Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles

Mostrar el registro completo del ítem

Villalonga, R.; Díez, P.; Sánchez, A.; Aznar, E.; Martínez-Máñez, R.; Pingarrón, J. (2013). Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chemistry - A European Journal. 19(24):7889-7894. https://doi.org/10.1002/chem.201300723

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151278

Ficheros en el ítem

Metadatos del ítem

Título: Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles
Autor: Villalonga, Reynaldo Díez, Paula Sánchez, Alfredo Aznar, Elena Martínez-Máñez, Ramón Pingarrón, J.M.
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Novel Janus nanoparticles with Au and mesoporous silica faces on opposite sides were prepared using a Pickering emulsion template with paraffin wax as the oil phase. These anisotropic colloids were employed as integrated ...[+]
Palabras clave: Controlled release , Enzyme , Janus nanoparticle , Mesoporous silica , Molecular gates
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201300723
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201300723
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2011-24355/ES/NUEVOS NANOMATERIALES POLIFUNCIONALIZADOS PARA LA CONSTRUCCION DE BIOSENSORES DE DETECCION MULTIPLE/
...[+]
info:eu-repo/grantAgreement/MICINN//CTQ2011-24355/ES/NUEVOS NANOMATERIALES POLIFUNCIONALIZADOS PARA LA CONSTRUCCION DE BIOSENSORES DE DETECCION MULTIPLE/
info:eu-repo/grantAgreement/MICINN//CTQ2009-12650/
info:eu-repo/grantAgreement/MICINN//CTQ2009-09351/
info:eu-repo/grantAgreement/CAM//S2009%2FPPQ-1642/ES/Nuevas Tecnologías para el desarrollo de plataformas sensoras y biosensoras avanzadas/
info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/
[-]
Agradecimientos:
R. V. acknowledges a Ramon & Cajal contract from the Spanish Ministry of Science and Innovation. Financial support from the Spanish Ministry of Science and Innovation CTQ2011-24355, CTQ2009-12650, CTQ2009-09351, ...[+]
Tipo: Artículo

References

Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., & Duguet, E. (2005). Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry, 15(35-36), 3745. doi:10.1039/b505099e

Jiang, S., Chen, Q., Tripathy, M., Luijten, E., Schweizer, K. S., & Granick, S. (2010). Janus Particle Synthesis and Assembly. Advanced Materials, 22(10), 1060-1071. doi:10.1002/adma.200904094

Lattuada, M., & Hatton, T. A. (2011). Synthesis, properties and applications of Janus nanoparticles. Nano Today, 6(3), 286-308. doi:10.1016/j.nantod.2011.04.008 [+]
Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., & Duguet, E. (2005). Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry, 15(35-36), 3745. doi:10.1039/b505099e

Jiang, S., Chen, Q., Tripathy, M., Luijten, E., Schweizer, K. S., & Granick, S. (2010). Janus Particle Synthesis and Assembly. Advanced Materials, 22(10), 1060-1071. doi:10.1002/adma.200904094

Lattuada, M., & Hatton, T. A. (2011). Synthesis, properties and applications of Janus nanoparticles. Nano Today, 6(3), 286-308. doi:10.1016/j.nantod.2011.04.008

Tang, J. L., Schoenwald, K., Potter, D., White, D., & Sulchek, T. (2012). Bifunctional Janus Microparticles with Spatially Segregated Proteins. Langmuir, 28(26), 10033-10039. doi:10.1021/la3010079

Kim, J.-W., Lee, D., Shum, H. C., & Weitz, D. A. (2008). Colloid Surfactants for Emulsion Stabilization. Advanced Materials, 20(17), 3239-3243. doi:10.1002/adma.200800484

Synytska, A., Khanum, R., Ionov, L., Cherif, C., & Bellmann, C. (2011). Water-Repellent Textile via Decorating Fibers with Amphiphilic Janus Particles. ACS Applied Materials & Interfaces, 3(4), 1216-1220. doi:10.1021/am200033u

Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R., & Golestanian, R. (2007). Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters, 99(4). doi:10.1103/physrevlett.99.048102

YOSHIDA, M., ROH, K., & LAHANN, J. (2007). Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes. Biomaterials, 28(15), 2446-2456. doi:10.1016/j.biomaterials.2007.01.048

Salem, A. K., Searson, P. C., & Leong, K. W. (2003). Multifunctional nanorods for gene delivery. Nature Materials, 2(10), 668-671. doi:10.1038/nmat974

Zhang, L., Zhang, F., Dong, W.-F., Song, J.-F., Huo, Q.-S., & Sun, H.-B. (2011). Magnetic-mesoporous Janus nanoparticles. Chem. Commun., 47(4), 1225-1227. doi:10.1039/c0cc03946b

Lee, J. E., Lee, N., Kim, T., Kim, J., & Hyeon, T. (2011). Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 44(10), 893-902. doi:10.1021/ar2000259

Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772

Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d

Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727f

Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831u

Feng, Y., He, J., Wang, H., Tay, Y. Y., Sun, H., Zhu, L., & Chen, H. (2012). An Unconventional Role of Ligand in Continuously Tuning of Metal–Metal Interfacial Strain. Journal of the American Chemical Society, 134(4), 2004-2007. doi:10.1021/ja211086y

Chen, T., Chen, G., Xing, S., Wu, T., & Chen, H. (2010). Scalable Routes to Janus Au−SiO2and Ternary Ag−Au−SiO2Nanoparticles. Chemistry of Materials, 22(13), 3826-3828. doi:10.1021/cm101155v

Hong, L., Jiang, S., & Granick, S. (2006). Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir, 22(23), 9495-9499. doi:10.1021/la062716z

Perro, A., Meunier, F., Schmitt, V., & Ravaine, S. (2009). Production of large quantities of «Janus» nanoparticles using wax-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1), 57-62. doi:10.1016/j.colsurfa.2008.08.027

Rodríguez-Fernández, D., Pérez-Juste, J., Pastoriza-Santos, I., & Liz-Marzán, L. M. (2012). Colloidal Synthesis of Gold Semishells. ChemistryOpen, 1(2), 90-95. doi:10.1002/open.201200002

Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir, 17(22), 6782-6786. doi:10.1021/la0104323

FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241(105), 20-22. doi:10.1038/physci241020a0

Ghosh, S. K., & Pal, T. (2007). Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews, 107(11), 4797-4862. doi:10.1021/cr0680282

Jaroniec, C. P., Kruk, M., Jaroniec, M., & Sayari, A. (1998). Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes. The Journal of Physical Chemistry B, 102(28), 5503-5510. doi:10.1021/jp981304z

Jaroniec, C. P., Gilpin, R. K., & Jaroniec, M. (1997). Adsorption and Thermogravimetric Studies of Silica-Based Amide Bonded Phases. The Journal of Physical Chemistry B, 101(35), 6861-6866. doi:10.1021/jp964002a

Innocenzi, P., Kozuka, H., & Yoko, T. (1997). Fluorescence Properties of the Ru(bpy)32+Complex Incorporated in Sol−Gel-Derived Silica Coating Films. The Journal of Physical Chemistry B, 101(13), 2285-2291. doi:10.1021/jp970004z

Stefanescu, M., Stoia, M., & Stefanescu, O. (2006). Thermal and FT-IR study of the hybrid ethylene-glycol–silica matrix. Journal of Sol-Gel Science and Technology, 41(1), 71-78. doi:10.1007/s10971-006-0118-5

Ammam, M., & Easton, E. B. (2012). Novel organic–inorganic hybrid material based on tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate and Dawson-type tungstophosphate K7[H4PW18O62]·18H2O as a bifuctional hydrogen peroxide electrocatalyst for biosensors. Sensors and Actuators B: Chemical, 161(1), 520-527. doi:10.1016/j.snb.2011.10.070

Leff, D. V., Brandt, L., & Heath, J. R. (1996). Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir, 12(20), 4723-4730. doi:10.1021/la960445u

Sahoo, B., Sahu, S. K., & Pramanik, P. (2011). A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. Journal of Molecular Catalysis B: Enzymatic, 69(3-4), 95-102. doi:10.1016/j.molcatb.2011.01.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem