- -

Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics

Mostrar el registro completo del ítem

Fraga-Timiraos, AB.; Rodríguez Muñiz, GM.; Peiro-Penalba, V.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2016). Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules. 21(12). https://doi.org/10.3390/molecules21121683

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151282

Ficheros en el ítem

Metadatos del ítem

Título: Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics
Autor: Fraga-Timiraos, Ana Belén Rodríguez Muñiz, Gemma María Peiro-Penalba, Vicente Miranda Alonso, Miguel Ángel Lhiaubet, Virginie Lyria
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Electron transfer involving nucleic acids and their derivatives is an important field in bioorganic chemistry, specifically in connection with its role in the photo-driven DNA damage and repair. Four-membered ring ...[+]
Palabras clave: DNA repair , Energy and charge transfer , Nucleobase analogues , Photolyase , Redox potential
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules21121683
Editorial:
MDPI AG
Versión del editor: http://doi.org/10.3390/molecules21121683
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
...[+]
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/MINECO//SVP-2013-068057/ES/SVP-2013-068057/
info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/
info:eu-repo/grantAgreement/MINECO//CTQ2015-71896-REDT/ES/RED DE FOTOQUIMICA BIOLOGICA/
info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/
[-]
Agradecimientos:
Spanish Government (CTQ2015-70164-P, RIRAAF RETICS RD12/0013/0009, Red de Fotoquimica Biologica CTQ2015-71896-REDT, Severo Ochoa program/SEV-2012-0267 and SVP-2013-068057 for A. B. F.-R. grant) and Generalitat Valenciana ...[+]
Tipo: Artículo

References

Arnold, A. R., Grodick, M. A., & Barton, J. K. (2016). DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology, 23(1), 183-197. doi:10.1016/j.chembiol.2015.11.010

Jia, C., Ma, B., Xin, N., & Guo, X. (2015). Carbon Electrode–Molecule Junctions: A Reliable Platform for Molecular Electronics. Accounts of Chemical Research, 48(9), 2565-2575. doi:10.1021/acs.accounts.5b00133

Beratan, D. N., Liu, C., Migliore, A., Polizzi, N. F., Skourtis, S. S., Zhang, P., & Zhang, Y. (2014). Charge Transfer in Dynamical Biosystems, or The Treachery of (Static) Images. Accounts of Chemical Research, 48(2), 474-481. doi:10.1021/ar500271d [+]
Arnold, A. R., Grodick, M. A., & Barton, J. K. (2016). DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology, 23(1), 183-197. doi:10.1016/j.chembiol.2015.11.010

Jia, C., Ma, B., Xin, N., & Guo, X. (2015). Carbon Electrode–Molecule Junctions: A Reliable Platform for Molecular Electronics. Accounts of Chemical Research, 48(9), 2565-2575. doi:10.1021/acs.accounts.5b00133

Beratan, D. N., Liu, C., Migliore, A., Polizzi, N. F., Skourtis, S. S., Zhang, P., & Zhang, Y. (2014). Charge Transfer in Dynamical Biosystems, or The Treachery of (Static) Images. Accounts of Chemical Research, 48(2), 474-481. doi:10.1021/ar500271d

Kawai, K., & Majima, T. (2013). Hole Transfer Kinetics of DNA. Accounts of Chemical Research, 46(11), 2616-2625. doi:10.1021/ar400079s

Sancar, A. (2003). Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews, 103(6), 2203-2238. doi:10.1021/cr0204348

Kanvah, S., Joseph, J., Schuster, G. B., Barnett, R. N., Cleveland, C. L., & Landman, U. (2010). Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 43(2), 280-287. doi:10.1021/ar900175a

Kelley, S. O. (1999). Electron Transfer Between Bases in Double Helical DNA. Science, 283(5400), 375-381. doi:10.1126/science.283.5400.375

Breeger, S., von Meltzer, M., Hennecke, U., & Carell, T. (2006). Investigation of the Pathways of Excess Electron Transfer in DNA with Flavin-Donor and Oxetane-Acceptor Modified DNA Hairpins. Chemistry - A European Journal, 12(25), 6469-6477. doi:10.1002/chem.200600074

Boussicault, F., & Robert, M. (2008). Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews, 108(7), 2622-2645. doi:10.1021/cr0680787

The Nobel Prize in Chemistry 2015—Advanced Informationhttp://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/advanced.html

Brettel, K., & Byrdin, M. (2010). Reaction mechanisms of DNA photolyase. Current Opinion in Structural Biology, 20(6), 693-701. doi:10.1016/j.sbi.2010.07.003

Dandliker, P. J. (1997). Oxidative Thymine Dimer Repair in the DNA Helix. Science, 275(5305), 1465-1468. doi:10.1126/science.275.5305.1465

Vicic, D. A., Odom, D. T., Núñez, M. E., Gianolio, D. A., McLaughlin, L. W., & Barton, J. K. (2000). Oxidative Repair of a Thymine Dimer in DNA from a Distance by a Covalently Linked Organic Intercalator. Journal of the American Chemical Society, 122(36), 8603-8611. doi:10.1021/ja000280i

Hartman, T., & Cibulka, R. (2016). Photocatalytic Systems with Flavinium Salts: From Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Organic Letters, 18(15), 3710-3713. doi:10.1021/acs.orglett.6b01743

Scannell, M. P., Fenick, D. J., Yeh, S.-R., & Falvey, D. E. (1997). Model Studies of DNA Photorepair:  Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching. Journal of the American Chemical Society, 119(8), 1971-1977. doi:10.1021/ja963360o

Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research, 47(4), 1359-1368. doi:10.1021/ar4003224

Boussicault, F., & Robert, M. (2006). Electrochemical Approach to the Repair of Oxetanes Mimicking DNA (6−4) Photoproducts. The Journal of Physical Chemistry B, 110(43), 21987-21993. doi:10.1021/jp062425z

Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050

Friedel, M. G., Cichon, M. K., & Carell, T. (2005). Model compounds for (6–4) photolyases: a comparative flavin induced cleavage study of oxetanes and thietanes. Organic & Biomolecular Chemistry, 3(10), 1937. doi:10.1039/b503205a

Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie International Edition, 55(20), 6037-6040. doi:10.1002/anie.201601475

Andreu, I., Delgado, J., Espinós, A., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2008). Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Organic Letters, 10(22), 5207-5210. doi:10.1021/ol802181u

Pac, C., Ohtsuki, T., Shiota, Y., Yanagida, S., & Sakurai, H. (1986). Photochemical Reactions of Aromatic Compounds. XLII. Photosensitized Reactions of Some Selected Diarylcyclobutanes by Aromatic Nitriles and Chloranil. Implications of Charge-Transfer Contributions on Exciplex Reactivities. Bulletin of the Chemical Society of Japan, 59(4), 1133-1139. doi:10.1246/bcsj.59.1133

Swenton, J. S., & Hyatt, J. A. (1974). Photosensitized cycloadditions to 1,3-dimethyl-6-azauracil and 1,3-dimethyl-6-azathymine. Imine linkage unusually reactive toward photocycloaddition. Journal of the American Chemical Society, 96(15), 4879-4885. doi:10.1021/ja00822a027

Scannell, M. P., Prakash, G., & Falvey, D. E. (1997). Photoinduced Electron Transfer to Pyrimidines and 5,6-Dihydropyrimidine Derivatives:  Reduction Potentials Determined by Fluorescence Quenching Kinetics. The Journal of Physical Chemistry A, 101(24), 4332-4337. doi:10.1021/jp970164a

Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/s0020-1693(99)00407-7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem