- -

Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fraga-Timiraos, Ana Belén es_ES
dc.contributor.author Rodríguez Muñiz, Gemma María es_ES
dc.contributor.author Peiro-Penalba, Vicente es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.date.accessioned 2020-10-07T03:33:49Z
dc.date.available 2020-10-07T03:33:49Z
dc.date.issued 2016-12 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151282
dc.description.abstract [EN] Electron transfer involving nucleic acids and their derivatives is an important field in bioorganic chemistry, specifically in connection with its role in the photo-driven DNA damage and repair. Four-membered ring heterocyclic oxetanes and azetidines have been claimed to be the intermediates involved in the repair of DNA (6-4) photoproduct by photolyase. In this context, we examine here the redox properties of the two azetidine isomers obtained from photocycloaddition between 6-aza-1,3-dimethyluracil and cyclohexene. Steady-state and time-resolved fluorescence experiments using a series of photoreductants and photooxidants have been run to evaluate the efficiency of the electron transfer process. Analysis of the obtained quenching kinetics shows that the azetidine compounds can act as electron donors. Additionally, it appears that the cis isomer is more easily oxidized than its trans counterpart. This result is in agreement with electrochemical studies performed on both azetidine derivatives. es_ES
dc.description.sponsorship Spanish Government (CTQ2015-70164-P, RIRAAF RETICS RD12/0013/0009, Red de Fotoquimica Biologica CTQ2015-71896-REDT, Severo Ochoa program/SEV-2012-0267 and SVP-2013-068057 for A. B. F.-R. grant) and Generalitat Valenciana (Prometeo II/2013/005) are gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject DNA repair es_ES
dc.subject Energy and charge transfer es_ES
dc.subject Nucleobase analogues es_ES
dc.subject Photolyase es_ES
dc.subject Redox potential es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules21121683 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2013-068057/ES/SVP-2013-068057/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-71896-REDT/ES/RED DE FOTOQUIMICA BIOLOGICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Fraga-Timiraos, AB.; Rodríguez Muñiz, GM.; Peiro-Penalba, V.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2016). Stereoselective Fluorescence Quenching in the Electron Transfer Photooxidation of Nucleobase-Related Azetidines by Cyanoaromatics. Molecules. 21(12). https://doi.org/10.3390/molecules21121683 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/molecules21121683 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 27941606 es_ES
dc.identifier.pmcid PMC6273614 es_ES
dc.relation.pasarela S\326856 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Arnold, A. R., Grodick, M. A., & Barton, J. K. (2016). DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology, 23(1), 183-197. doi:10.1016/j.chembiol.2015.11.010 es_ES
dc.description.references Jia, C., Ma, B., Xin, N., & Guo, X. (2015). Carbon Electrode–Molecule Junctions: A Reliable Platform for Molecular Electronics. Accounts of Chemical Research, 48(9), 2565-2575. doi:10.1021/acs.accounts.5b00133 es_ES
dc.description.references Beratan, D. N., Liu, C., Migliore, A., Polizzi, N. F., Skourtis, S. S., Zhang, P., & Zhang, Y. (2014). Charge Transfer in Dynamical Biosystems, or The Treachery of (Static) Images. Accounts of Chemical Research, 48(2), 474-481. doi:10.1021/ar500271d es_ES
dc.description.references Kawai, K., & Majima, T. (2013). Hole Transfer Kinetics of DNA. Accounts of Chemical Research, 46(11), 2616-2625. doi:10.1021/ar400079s es_ES
dc.description.references Sancar, A. (2003). Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews, 103(6), 2203-2238. doi:10.1021/cr0204348 es_ES
dc.description.references Kanvah, S., Joseph, J., Schuster, G. B., Barnett, R. N., Cleveland, C. L., & Landman, U. (2010). Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 43(2), 280-287. doi:10.1021/ar900175a es_ES
dc.description.references Kelley, S. O. (1999). Electron Transfer Between Bases in Double Helical DNA. Science, 283(5400), 375-381. doi:10.1126/science.283.5400.375 es_ES
dc.description.references Breeger, S., von Meltzer, M., Hennecke, U., & Carell, T. (2006). Investigation of the Pathways of Excess Electron Transfer in DNA with Flavin-Donor and Oxetane-Acceptor Modified DNA Hairpins. Chemistry - A European Journal, 12(25), 6469-6477. doi:10.1002/chem.200600074 es_ES
dc.description.references Boussicault, F., & Robert, M. (2008). Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews, 108(7), 2622-2645. doi:10.1021/cr0680787 es_ES
dc.description.references The Nobel Prize in Chemistry 2015—Advanced Informationhttp://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/advanced.html es_ES
dc.description.references Brettel, K., & Byrdin, M. (2010). Reaction mechanisms of DNA photolyase. Current Opinion in Structural Biology, 20(6), 693-701. doi:10.1016/j.sbi.2010.07.003 es_ES
dc.description.references Dandliker, P. J. (1997). Oxidative Thymine Dimer Repair in the DNA Helix. Science, 275(5305), 1465-1468. doi:10.1126/science.275.5305.1465 es_ES
dc.description.references Vicic, D. A., Odom, D. T., Núñez, M. E., Gianolio, D. A., McLaughlin, L. W., & Barton, J. K. (2000). Oxidative Repair of a Thymine Dimer in DNA from a Distance by a Covalently Linked Organic Intercalator. Journal of the American Chemical Society, 122(36), 8603-8611. doi:10.1021/ja000280i es_ES
dc.description.references Hartman, T., & Cibulka, R. (2016). Photocatalytic Systems with Flavinium Salts: From Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Organic Letters, 18(15), 3710-3713. doi:10.1021/acs.orglett.6b01743 es_ES
dc.description.references Scannell, M. P., Fenick, D. J., Yeh, S.-R., & Falvey, D. E. (1997). Model Studies of DNA Photorepair:  Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching. Journal of the American Chemical Society, 119(8), 1971-1977. doi:10.1021/ja963360o es_ES
dc.description.references Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research, 47(4), 1359-1368. doi:10.1021/ar4003224 es_ES
dc.description.references Boussicault, F., & Robert, M. (2006). Electrochemical Approach to the Repair of Oxetanes Mimicking DNA (6−4) Photoproducts. The Journal of Physical Chemistry B, 110(43), 21987-21993. doi:10.1021/jp062425z es_ES
dc.description.references Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050 es_ES
dc.description.references Friedel, M. G., Cichon, M. K., & Carell, T. (2005). Model compounds for (6–4) photolyases: a comparative flavin induced cleavage study of oxetanes and thietanes. Organic & Biomolecular Chemistry, 3(10), 1937. doi:10.1039/b503205a es_ES
dc.description.references Fraga-Timiraos, A. B., Lhiaubet-Vallet, V., & Miranda, M. A. (2016). Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6- 4) Photoproduct by Electron Transfer Photoreduction. Angewandte Chemie International Edition, 55(20), 6037-6040. doi:10.1002/anie.201601475 es_ES
dc.description.references Andreu, I., Delgado, J., Espinós, A., Pérez-Ruiz, R., Jiménez, M. C., & Miranda, M. A. (2008). Cycloreversion of Azetidines via Oxidative Electron Transfer. Steady-State and Time-Resolved Studies. Organic Letters, 10(22), 5207-5210. doi:10.1021/ol802181u es_ES
dc.description.references Pac, C., Ohtsuki, T., Shiota, Y., Yanagida, S., & Sakurai, H. (1986). Photochemical Reactions of Aromatic Compounds. XLII. Photosensitized Reactions of Some Selected Diarylcyclobutanes by Aromatic Nitriles and Chloranil. Implications of Charge-Transfer Contributions on Exciplex Reactivities. Bulletin of the Chemical Society of Japan, 59(4), 1133-1139. doi:10.1246/bcsj.59.1133 es_ES
dc.description.references Swenton, J. S., & Hyatt, J. A. (1974). Photosensitized cycloadditions to 1,3-dimethyl-6-azauracil and 1,3-dimethyl-6-azathymine. Imine linkage unusually reactive toward photocycloaddition. Journal of the American Chemical Society, 96(15), 4879-4885. doi:10.1021/ja00822a027 es_ES
dc.description.references Scannell, M. P., Prakash, G., & Falvey, D. E. (1997). Photoinduced Electron Transfer to Pyrimidines and 5,6-Dihydropyrimidine Derivatives:  Reduction Potentials Determined by Fluorescence Quenching Kinetics. The Journal of Physical Chemistry A, 101(24), 4332-4337. doi:10.1021/jp970164a es_ES
dc.description.references Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/s0020-1693(99)00407-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem