Mostrar el registro sencillo del ítem
dc.contributor.author | Sosa-Madrid, Bolivar Samuel | es_ES |
dc.contributor.author | Santacreu Jerez, María Antonia | es_ES |
dc.contributor.author | Blasco Mateu, Agustín | es_ES |
dc.contributor.author | Fontanesi, Luca | es_ES |
dc.contributor.author | Pena, R. | es_ES |
dc.contributor.author | Ibáñez-Escriche, Noelia | es_ES |
dc.date.accessioned | 2020-10-07T03:35:12Z | |
dc.date.available | 2020-10-07T03:35:12Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 0931-2668 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151311 | |
dc.description.abstract | [EN] Uterine capacity (UC), defined as the total number of kits from unilaterally ovariectomized does at birth, has a high genetic correlation with litter size. The aim of our research was to identify genomic regions associated with litter size traits through a genome-wide association study using rabbits from a divergent selection experiment for UC. A high-density SNP array (200K) was used to genotype 181 does from a control population, high and low UC lines. Traits included total number born (TNB), number born alive (NBA), number born dead, ovulation rate (OR), implanted embryos (IE), and embryo, foetal and prenatal survivals at second parity. We implemented the Bayes B method and the associations were tested by Bayes factors and the percentage of genomic variance (GV) explained by windows. Different genomic regions associated with TNB, NBA, IE, and OR were found. These regions explained 7.36%, 1.27%, 15.87%, and 3.95% of GV, respectively. Two consecutive windows on chromosome 17 were associated with TNB, NBA, and IE. This genomic region accounted for 6.32% of GV of TNB. In this region, we found the BMP4, PTDGR, PTGER2, STYX and CDKN3 candidate genes which presented functional annotations linked to some reproductive processes. Our findings suggest that a genomic region on chromosome 17 has an important effect on litter size traits. However, further analyses are needed to validate this region in other maternal rabbit lines. | es_ES |
dc.description.sponsorship | The work was funded by project AGL2014-55921-C2-1-P from the National Programme for Fostering Excellence in Scientific and Technical Research Project I+D. B. Samuel Sosa-Madrid was supported by a grant from the National Secretariat of Science, Technology, and Innovation of Panama (SENACYT) for a master's degree (the first stage of this study): BECA-2199-40-2012. Also, he was supported by an FPI grant from the Ministry of Economy and Competitiveness of Spain (the second stage of this study): BES-2015-074194. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Journal of Animal Breeding and Genetics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Divergent selection | es_ES |
dc.subject | Genome-wide association studies | es_ES |
dc.subject | Litter size | es_ES |
dc.subject | Quantitative trait loci | es_ES |
dc.subject | Rabbits | es_ES |
dc.subject | Uterine capacity | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/jbg.12451 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SENACYT//BECA-2199-40-2012/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Sosa-Madrid, BS.; Santacreu Jerez, MA.; Blasco Mateu, A.; Fontanesi, L.; Pena, R.; Ibáñez-Escriche, N. (2020). A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. Journal of Animal Breeding and Genetics. 137(2):123-138. https://doi.org/10.1111/jbg.12451 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/jbg.12451 | es_ES |
dc.description.upvformatpinicio | 123 | es_ES |
dc.description.upvformatpfin | 138 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 137 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 31657065 | es_ES |
dc.relation.pasarela | S\395254 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Secretaría Nacional de Ciencia, Tecnología e Innovación, Panamá | es_ES |
dc.description.references | Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093 | es_ES |
dc.description.references | Al-Samerria, S., Al-Ali, I., McFarlane, J. R., & Almahbobi, G. (2015). The impact of passive immunisation against BMPRIB and BMP4 on follicle development and ovulation in mice. REPRODUCTION, 149(5), 403-411. doi:10.1530/rep-14-0451 | es_ES |
dc.description.references | Argente, M. J., Merchán, M., Peiró, R., García, M. L., Santacreu, M. A., Folch, J. M., & Blasco, A. (2010). Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity1. Journal of Animal Science, 88(3), 828-836. doi:10.2527/jas.2009-2324 | es_ES |
dc.description.references | Argente, M. J., Santacreu, M. A., Climent, A., Bolet, G., & Blasco, A. (1997). Divergent selection for uterine capacity in rabbits. Journal of Animal Science, 75(9), 2350. doi:10.2527/1997.7592350x | es_ES |
dc.description.references | Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 | es_ES |
dc.description.references | Ballester, M., Castelló, A., Peiró, R., Argente, M. J., Santacreu, M. A., & Folch, J. M. (2012). Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization. Animal Genetics, 44(3), 296-304. doi:10.1111/age.12005 | es_ES |
dc.description.references | Bergfelder-Drüing, S., Grosse-Brinkhaus, C., Lind, B., Erbe, M., Schellander, K., Simianer, H., & Tholen, E. (2015). A Genome-Wide Association Study in Large White and Landrace Pig Populations for Number Piglets Born Alive. PLOS ONE, 10(3), e0117468. doi:10.1371/journal.pone.0117468 | es_ES |
dc.description.references | Blasco, A., Argente, M. J., Haley, C. S., & Santacreu, M. A. (1994). Relationships between components of litter size in unilaterally ovariectomized and intact rabbit does. Journal of Animal Science, 72(12), 3066-3072. doi:10.2527/1994.72123066x | es_ES |
dc.description.references | Blasco, A., Ortega, J. A., Climent, A., & Santacreu, M. A. (2005). Divergent selection for uterine capacity in rabbits. I. Genetic parameters and response to selection1. Journal of Animal Science, 83(10), 2297-2302. doi:10.2527/2005.83102297x | es_ES |
dc.description.references | Blasco, A., & Pena, R. N. (2018). Current Status of Genomic Maps: Genomic Selection/GBV in Livestock. Animal Biotechnology 2, 61-80. doi:10.1007/978-3-319-92348-2_4 | es_ES |
dc.description.references | Browning, B. L., & Browning, S. R. (2009). A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals. The American Journal of Human Genetics, 84(2), 210-223. doi:10.1016/j.ajhg.2009.01.005 | es_ES |
dc.description.references | Carneiro, M., Afonso, S., Geraldes, A., Garreau, H., Bolet, G., Boucher, S., … Ferrand, N. (2011). The Genetic Structure of Domestic Rabbits. Molecular Biology and Evolution, 28(6), 1801-1816. doi:10.1093/molbev/msr003 | es_ES |
dc.description.references | Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alfoldi, J., Barrio, A. M., … Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079. doi:10.1126/science.1253714 | es_ES |
dc.description.references | Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747 | es_ES |
dc.description.references | Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1), 39. doi:10.1186/1471-2156-15-39 | es_ES |
dc.description.references | Christenson, R. K., Leymaster, K. A., & Young, L. D. (1987). Justification of Unilateral Hysterectomy-Ovariectomy as a Model to Evaluate Uterine Capacity in Swine. Journal of Animal Science, 65(3), 738-744. doi:10.2527/jas1987.653738x | es_ES |
dc.description.references | Ding, X., Zhang, X., Mu, Y., Li, Y., & Hao, J. (2012). Effects of BMP4/SMAD signaling pathway on mouse primordial follicle growth and survival via up-regulation ofSohlh2andc-kit. Molecular Reproduction and Development, 80(1), 70-78. doi:10.1002/mrd.22138 | es_ES |
dc.description.references | Fan, B., Du, Z.-Q., Gorbach, D. M., & Rothschild, M. F. (2010). Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847. doi:10.5713/ajas.2010.r.03 | es_ES |
dc.description.references | Garrick, D. J., & Fernando, R. L. (2013). Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology. Genome-Wide Association Studies and Genomic Prediction, 275-298. doi:10.1007/978-1-62703-447-0_11 | es_ES |
dc.description.references | Goggolidou, P., Soneji, S., Powles-Glover, N., Williams, D., Sethi, S., Baban, D., … Norris, D. P. (2013). A chronological expression profile of gene activity during embryonic mouse brain development. Mammalian Genome, 24(11-12), 459-472. doi:10.1007/s00335-013-9486-7 | es_ES |
dc.description.references | Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251 | es_ES |
dc.description.references | Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572 | es_ES |
dc.description.references | Kessner, D., & Novembre, J. (2015). Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits. Genetics, 199(4), 991-1005. doi:10.1534/genetics.115.175075 | es_ES |
dc.description.references | Konno, T., Pinho Melo, E., Lopes, C., Mehmeti, I., Lenzen, S., Ron, D., & Avezov, E. (2015). ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding. Journal of Cell Biology, 211(2), 253-259. doi:10.1083/jcb.201506123 | es_ES |
dc.description.references | Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219 | es_ES |
dc.description.references | Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906 | es_ES |
dc.description.references | Lehermeier, C., Wimmer, V., Albrecht, T., Auinger, H.-J., Gianola, D., Schmid, V. J., & Schön, C.-C. (2013). Sensitivity to prior specification in Bayesian genome-based prediction models. Statistical Applications in Genetics and Molecular Biology, 12(3). doi:10.1515/sagmb-2012-0042 | es_ES |
dc.description.references | Li, Y., & Parast, M. M. (2014). BMP4 regulation of human trophoblast development. The International Journal of Developmental Biology, 58(2-3-4), 239-246. doi:10.1387/ijdb.130341mp | es_ES |
dc.description.references | López de Maturana, E., Ibáñez-Escriche, N., González-Recio, Ó., Marenne, G., Mehrban, H., Chanock, S. J., … Malats, N. (2014). Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics, 133(10), 1235-1253. doi:10.1007/s00439-014-1461-1 | es_ES |
dc.description.references | Marras, G., Rossoni, A., Schwarzenbacher, H., Biffani, S., Biscarini, F., & Nicolazzi, E. L. (2016). zanardi: an open-source pipeline for multiple-species genomic analysis of SNP array data. Animal Genetics, 48(1), 121-121. doi:10.1111/age.12485 | es_ES |
dc.description.references | Matzuk, M. M., & Lamb, D. J. (2002). Genetic dissection of mammalian fertility pathways. Nature Cell Biology, 4, S33-S40. doi:10.1038/ncb-nm-fertilitys41 | es_ES |
dc.description.references | Merchán, M., Peiró, R., Argente, M. J., Santacreu, M. A., García, M. L., Blasco, A., & Folch, J. M. (2009). Analysis of theoviductal glycoprotein 1polymorphisms and their effects on components of litter size in rabbits. Animal Genetics, 40(5), 756-758. doi:10.1111/j.1365-2052.2009.01898.x | es_ES |
dc.description.references | Mocé, M. L., Santacreu, M. A., Climent, A., & Blasco, A. (2004). The effect of divergent selection for uterine capacity on fetal and placental development at term in rabbits: Maternal and embryonic genetic effects1. Journal of Animal Science, 82(4), 1046-1052. doi:10.1093/ansci/82.4.1046 | es_ES |
dc.description.references | Mocé, M. L., Santacreu, M. A., Climent, A., & Blasco, A. (2005). Divergent selection for uterine capacity in rabbits. III. Responses in uterine capacity and its components estimated with a cryopreserved control population1. Journal of Animal Science, 83(10), 2308-2312. doi:10.2527/2005.83102308x | es_ES |
dc.description.references | Onteru, S. K., Fan, B., Du, Z.-Q., Garrick, D. J., Stalder, K. J., & Rothschild, M. F. (2011). A whole-genome association study for pig reproductive traits. Animal Genetics, 43(1), 18-26. doi:10.1111/j.1365-2052.2011.02213.x | es_ES |
dc.description.references | Onteru, S. K., Gorbach, D. M., Young, J. M., Garrick, D. J., Dekkers, J. C. M., & Rothschild, M. F. (2013). Whole Genome Association Studies of Residual Feed Intake and Related Traits in the Pig. PLoS ONE, 8(6), e61756. doi:10.1371/journal.pone.0061756 | es_ES |
dc.description.references | Peiró, R., Merchán, M., Santacreu, M. A., Argente, M. J., García, M. L., Folch, J. M., & Blasco, A. (2008). Identification of Single-Nucleotide Polymorphism in the Progesterone Receptor Gene and Its Association With Reproductive Traits in Rabbits. Genetics, 180(3), 1699-1705. doi:10.1534/genetics.108.090779 | es_ES |
dc.description.references | Piles, M., García, M. L., Rafel, O., Ramon, J., & Baselga, M. (2006). Genetics of litter size in three maternal lines of rabbits: Repeatability versus multiple-trait models. Journal of Animal Science, 84(9), 2309-2315. doi:10.2527/jas.2005-622 | es_ES |
dc.description.references | Quinton, V. M., Wilton, J. W., Robinson, J. A., & Mathur, P. K. (2006). Economic weights for sow productivity traits in nucleus pig populations. Livestock Science, 99(1), 69-77. doi:10.1016/j.livprodsci.2005.06.002 | es_ES |
dc.description.references | Ragab, M., Sánchez, J. P., Mínguez, C., Vicente, J. S., & Baselga, M. (2014). Litter size components in a full diallel cross of four maternal lines of rabbits1. Journal of Animal Science, 92(8), 3231-3236. doi:10.2527/jas.2013-7286 | es_ES |
dc.description.references | Rosenbloom, K. R., Armstrong, J., Barber, G. P., Casper, J., Clawson, H., Diekhans, M., … Kent, W. J. (2014). The UCSC Genome Browser database: 2015 update. Nucleic Acids Research, 43(D1), D670-D681. doi:10.1093/nar/gku1177 | es_ES |
dc.description.references | Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496 | es_ES |
dc.description.references | Rossitto, M., Ujjan, S., Poulat, F., & Boizet-Bonhoure, B. (2015). Multiple roles of the prostaglandin D2 signaling pathway in reproduction. REPRODUCTION, 149(1), R49-R58. doi:10.1530/rep-14-0381 | es_ES |
dc.description.references | Santacreu, M. A., Mocé, M. L., Climent, A., & Blasco, A. (2005). Divergent selection for uterine capacity in rabbits. II. Correlated response in litter size and its components estimated with a cryopreserved control population1. Journal of Animal Science, 83(10), 2303-2307. doi:10.2527/2005.83102303x | es_ES |
dc.description.references | Schneider, J. F., Nonneman, D. J., Wiedmann, R. T., Vallet, J. L., & Rohrer, G. A. (2014). Genomewide association and identification of candidate genes for ovulation rate in swine12. Journal of Animal Science, 92(9), 3792-3803. doi:10.2527/jas.2014-7788 | es_ES |
dc.description.references | Schneider, J. F., Rempel, L. A., Snelling, W. M., Wiedmann, R. T., Nonneman, D. J., & Rohrer, G. A. (2012). Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data1,2. Journal of Animal Science, 90(10), 3360-3367. doi:10.2527/jas.2011-4759 | es_ES |
dc.description.references | Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., … Lancet, D. (2016). The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54(1). doi:10.1002/cpbi.5 | es_ES |
dc.description.references | Stephens, M., & Balding, D. J. (2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10(10), 681-690. doi:10.1038/nrg2615 | es_ES |
dc.description.references | Toosi, A., Fernando, R. L., & Dekkers, J. C. M. (2018). Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0402-1 | es_ES |
dc.description.references | H.M., Y., Kumar, S., Dubey, P. P., Modi, R. P., Chaudhary, R., A., S. K., … B., S. (2017). Profiling of sperm gene transcripts in crossbred ( Bos taurus x Bos indicus ) bulls. Animal Reproduction Science, 177, 25-34. doi:10.1016/j.anireprosci.2016.12.003 | es_ES |
dc.description.references | Zeisel, S. H. (2011). The supply of choline is important for fetal progenitor cells. Seminars in Cell & Developmental Biology, 22(6), 624-628. doi:10.1016/j.semcdb.2011.06.002 | es_ES |
dc.description.references | Ziadi, C., Mocé, M. L., Laborda, P., Blasco, A., & Santacreu, M. A. (2013). Genetic selection for ovulation rate and litter size in rabbits: Estimation of genetic parameters and direct and correlated responses1. Journal of Animal Science, 91(7), 3113-3120. doi:10.2527/jas.2012-6043 | es_ES |