- -

A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits

Mostrar el registro completo del ítem

Sosa-Madrid, BS.; Santacreu Jerez, MA.; Blasco Mateu, A.; Fontanesi, L.; Pena, R.; Ibáñez-Escriche, N. (2020). A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. Journal of Animal Breeding and Genetics. 137(2):123-138. https://doi.org/10.1111/jbg.12451

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151311

Ficheros en el ítem

Metadatos del ítem

Título: A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits
Autor: Sosa-Madrid, Bolivar Samuel Santacreu Jerez, María Antonia Blasco Mateu, Agustín Fontanesi, Luca Pena, R. Ibáñez-Escriche, Noelia
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Uterine capacity (UC), defined as the total number of kits from unilaterally ovariectomized does at birth, has a high genetic correlation with litter size. The aim of our research was to identify genomic regions ...[+]
Palabras clave: Divergent selection , Genome-wide association studies , Litter size , Quantitative trait loci , Rabbits , Uterine capacity
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Animal Breeding and Genetics. (issn: 0931-2668 )
DOI: 10.1111/jbg.12451
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/jbg.12451
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/
info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/
info:eu-repo/grantAgreement/SENACYT//BECA-2199-40-2012/
Agradecimientos:
The work was funded by project AGL2014-55921-C2-1-P from the National Programme for Fostering Excellence in Scientific and Technical Research Project I+D. B. Samuel Sosa-Madrid was supported by a grant from the National ...[+]
Tipo: Artículo

References

Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093

Al-Samerria, S., Al-Ali, I., McFarlane, J. R., & Almahbobi, G. (2015). The impact of passive immunisation against BMPRIB and BMP4 on follicle development and ovulation in mice. REPRODUCTION, 149(5), 403-411. doi:10.1530/rep-14-0451

Argente, M. J., Merchán, M., Peiró, R., García, M. L., Santacreu, M. A., Folch, J. M., & Blasco, A. (2010). Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity1. Journal of Animal Science, 88(3), 828-836. doi:10.2527/jas.2009-2324 [+]
Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093

Al-Samerria, S., Al-Ali, I., McFarlane, J. R., & Almahbobi, G. (2015). The impact of passive immunisation against BMPRIB and BMP4 on follicle development and ovulation in mice. REPRODUCTION, 149(5), 403-411. doi:10.1530/rep-14-0451

Argente, M. J., Merchán, M., Peiró, R., García, M. L., Santacreu, M. A., Folch, J. M., & Blasco, A. (2010). Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity1. Journal of Animal Science, 88(3), 828-836. doi:10.2527/jas.2009-2324

Argente, M. J., Santacreu, M. A., Climent, A., Bolet, G., & Blasco, A. (1997). Divergent selection for uterine capacity in rabbits. Journal of Animal Science, 75(9), 2350. doi:10.2527/1997.7592350x

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556

Ballester, M., Castelló, A., Peiró, R., Argente, M. J., Santacreu, M. A., & Folch, J. M. (2012). Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization. Animal Genetics, 44(3), 296-304. doi:10.1111/age.12005

Bergfelder-Drüing, S., Grosse-Brinkhaus, C., Lind, B., Erbe, M., Schellander, K., Simianer, H., & Tholen, E. (2015). A Genome-Wide Association Study in Large White and Landrace Pig Populations for Number Piglets Born Alive. PLOS ONE, 10(3), e0117468. doi:10.1371/journal.pone.0117468

Blasco, A., Argente, M. J., Haley, C. S., & Santacreu, M. A. (1994). Relationships between components of litter size in unilaterally ovariectomized and intact rabbit does. Journal of Animal Science, 72(12), 3066-3072. doi:10.2527/1994.72123066x

Blasco, A., Ortega, J. A., Climent, A., & Santacreu, M. A. (2005). Divergent selection for uterine capacity in rabbits. I. Genetic parameters and response to selection1. Journal of Animal Science, 83(10), 2297-2302. doi:10.2527/2005.83102297x

Blasco, A., & Pena, R. N. (2018). Current Status of Genomic Maps: Genomic Selection/GBV in Livestock. Animal Biotechnology 2, 61-80. doi:10.1007/978-3-319-92348-2_4

Browning, B. L., & Browning, S. R. (2009). A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals. The American Journal of Human Genetics, 84(2), 210-223. doi:10.1016/j.ajhg.2009.01.005

Carneiro, M., Afonso, S., Geraldes, A., Garreau, H., Bolet, G., Boucher, S., … Ferrand, N. (2011). The Genetic Structure of Domestic Rabbits. Molecular Biology and Evolution, 28(6), 1801-1816. doi:10.1093/molbev/msr003

Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alfoldi, J., Barrio, A. M., … Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079. doi:10.1126/science.1253714

Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747

Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1), 39. doi:10.1186/1471-2156-15-39

Christenson, R. K., Leymaster, K. A., & Young, L. D. (1987). Justification of Unilateral Hysterectomy-Ovariectomy as a Model to Evaluate Uterine Capacity in Swine. Journal of Animal Science, 65(3), 738-744. doi:10.2527/jas1987.653738x

Ding, X., Zhang, X., Mu, Y., Li, Y., & Hao, J. (2012). Effects of BMP4/SMAD signaling pathway on mouse primordial follicle growth and survival via up-regulation ofSohlh2andc-kit. Molecular Reproduction and Development, 80(1), 70-78. doi:10.1002/mrd.22138

Fan, B., Du, Z.-Q., Gorbach, D. M., & Rothschild, M. F. (2010). Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847. doi:10.5713/ajas.2010.r.03

Garrick, D. J., & Fernando, R. L. (2013). Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology. Genome-Wide Association Studies and Genomic Prediction, 275-298. doi:10.1007/978-1-62703-447-0_11

Goggolidou, P., Soneji, S., Powles-Glover, N., Williams, D., Sethi, S., Baban, D., … Norris, D. P. (2013). A chronological expression profile of gene activity during embryonic mouse brain development. Mammalian Genome, 24(11-12), 459-472. doi:10.1007/s00335-013-9486-7

Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572

Kessner, D., & Novembre, J. (2015). Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits. Genetics, 199(4), 991-1005. doi:10.1534/genetics.115.175075

Konno, T., Pinho Melo, E., Lopes, C., Mehmeti, I., Lenzen, S., Ron, D., & Avezov, E. (2015). ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding. Journal of Cell Biology, 211(2), 253-259. doi:10.1083/jcb.201506123

Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219

Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906

Lehermeier, C., Wimmer, V., Albrecht, T., Auinger, H.-J., Gianola, D., Schmid, V. J., & Schön, C.-C. (2013). Sensitivity to prior specification in Bayesian genome-based prediction models. Statistical Applications in Genetics and Molecular Biology, 12(3). doi:10.1515/sagmb-2012-0042

Li, Y., & Parast, M. M. (2014). BMP4 regulation of human trophoblast development. The International Journal of Developmental Biology, 58(2-3-4), 239-246. doi:10.1387/ijdb.130341mp

López de Maturana, E., Ibáñez-Escriche, N., González-Recio, Ó., Marenne, G., Mehrban, H., Chanock, S. J., … Malats, N. (2014). Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics, 133(10), 1235-1253. doi:10.1007/s00439-014-1461-1

Marras, G., Rossoni, A., Schwarzenbacher, H., Biffani, S., Biscarini, F., & Nicolazzi, E. L. (2016). zanardi: an open-source pipeline for multiple-species genomic analysis of SNP array data. Animal Genetics, 48(1), 121-121. doi:10.1111/age.12485

Matzuk, M. M., & Lamb, D. J. (2002). Genetic dissection of mammalian fertility pathways. Nature Cell Biology, 4, S33-S40. doi:10.1038/ncb-nm-fertilitys41

Merchán, M., Peiró, R., Argente, M. J., Santacreu, M. A., García, M. L., Blasco, A., & Folch, J. M. (2009). Analysis of theoviductal glycoprotein 1polymorphisms and their effects on components of litter size in rabbits. Animal Genetics, 40(5), 756-758. doi:10.1111/j.1365-2052.2009.01898.x

Mocé, M. L., Santacreu, M. A., Climent, A., & Blasco, A. (2004). The effect of divergent selection for uterine capacity on fetal and placental development at term in rabbits: Maternal and embryonic genetic effects1. Journal of Animal Science, 82(4), 1046-1052. doi:10.1093/ansci/82.4.1046

Mocé, M. L., Santacreu, M. A., Climent, A., & Blasco, A. (2005). Divergent selection for uterine capacity in rabbits. III. Responses in uterine capacity and its components estimated with a cryopreserved control population1. Journal of Animal Science, 83(10), 2308-2312. doi:10.2527/2005.83102308x

Onteru, S. K., Fan, B., Du, Z.-Q., Garrick, D. J., Stalder, K. J., & Rothschild, M. F. (2011). A whole-genome association study for pig reproductive traits. Animal Genetics, 43(1), 18-26. doi:10.1111/j.1365-2052.2011.02213.x

Onteru, S. K., Gorbach, D. M., Young, J. M., Garrick, D. J., Dekkers, J. C. M., & Rothschild, M. F. (2013). Whole Genome Association Studies of Residual Feed Intake and Related Traits in the Pig. PLoS ONE, 8(6), e61756. doi:10.1371/journal.pone.0061756

Peiró, R., Merchán, M., Santacreu, M. A., Argente, M. J., García, M. L., Folch, J. M., & Blasco, A. (2008). Identification of Single-Nucleotide Polymorphism in the Progesterone Receptor Gene and Its Association With Reproductive Traits in Rabbits. Genetics, 180(3), 1699-1705. doi:10.1534/genetics.108.090779

Piles, M., García, M. L., Rafel, O., Ramon, J., & Baselga, M. (2006). Genetics of litter size in three maternal lines of rabbits: Repeatability versus multiple-trait models. Journal of Animal Science, 84(9), 2309-2315. doi:10.2527/jas.2005-622

Quinton, V. M., Wilton, J. W., Robinson, J. A., & Mathur, P. K. (2006). Economic weights for sow productivity traits in nucleus pig populations. Livestock Science, 99(1), 69-77. doi:10.1016/j.livprodsci.2005.06.002

Ragab, M., Sánchez, J. P., Mínguez, C., Vicente, J. S., & Baselga, M. (2014). Litter size components in a full diallel cross of four maternal lines of rabbits1. Journal of Animal Science, 92(8), 3231-3236. doi:10.2527/jas.2013-7286

Rosenbloom, K. R., Armstrong, J., Barber, G. P., Casper, J., Clawson, H., Diekhans, M., … Kent, W. J. (2014). The UCSC Genome Browser database: 2015 update. Nucleic Acids Research, 43(D1), D670-D681. doi:10.1093/nar/gku1177

Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496

Rossitto, M., Ujjan, S., Poulat, F., & Boizet-Bonhoure, B. (2015). Multiple roles of the prostaglandin D2 signaling pathway in reproduction. REPRODUCTION, 149(1), R49-R58. doi:10.1530/rep-14-0381

Santacreu, M. A., Mocé, M. L., Climent, A., & Blasco, A. (2005). Divergent selection for uterine capacity in rabbits. II. Correlated response in litter size and its components estimated with a cryopreserved control population1. Journal of Animal Science, 83(10), 2303-2307. doi:10.2527/2005.83102303x

Schneider, J. F., Nonneman, D. J., Wiedmann, R. T., Vallet, J. L., & Rohrer, G. A. (2014). Genomewide association and identification of candidate genes for ovulation rate in swine12. Journal of Animal Science, 92(9), 3792-3803. doi:10.2527/jas.2014-7788

Schneider, J. F., Rempel, L. A., Snelling, W. M., Wiedmann, R. T., Nonneman, D. J., & Rohrer, G. A. (2012). Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data1,2. Journal of Animal Science, 90(10), 3360-3367. doi:10.2527/jas.2011-4759

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., … Lancet, D. (2016). The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54(1). doi:10.1002/cpbi.5

Stephens, M., & Balding, D. J. (2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10(10), 681-690. doi:10.1038/nrg2615

Toosi, A., Fernando, R. L., & Dekkers, J. C. M. (2018). Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0402-1

H.M., Y., Kumar, S., Dubey, P. P., Modi, R. P., Chaudhary, R., A., S. K., … B., S. (2017). Profiling of sperm gene transcripts in crossbred ( Bos taurus x Bos indicus ) bulls. Animal Reproduction Science, 177, 25-34. doi:10.1016/j.anireprosci.2016.12.003

Zeisel, S. H. (2011). The supply of choline is important for fetal progenitor cells. Seminars in Cell & Developmental Biology, 22(6), 624-628. doi:10.1016/j.semcdb.2011.06.002

Ziadi, C., Mocé, M. L., Laborda, P., Blasco, A., & Santacreu, M. A. (2013). Genetic selection for ovulation rate and litter size in rabbits: Estimation of genetic parameters and direct and correlated responses1. Journal of Animal Science, 91(7), 3113-3120. doi:10.2527/jas.2012-6043

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem