Preul, M. C., Caramanos, Z., Collins, D. L., Villemure, J.-G., Leblanc, R., Olivier, A., … Arnold, D. L. (1996). Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Medicine, 2(3), 323-325. doi:10.1038/nm0396-323
Poptani, H., Kaartinen, J., Gupta, R. K., Niemitz, M., Hiltunen, Y., & Kauppinen, R. A. (1999). Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. Journal of Cancer Research and Clinical Oncology, 125(6), 343-349. doi:10.1007/s004320050284
Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39(1), 1-40. doi:10.1016/s0079-6565(00)00036-4
[+]
Preul, M. C., Caramanos, Z., Collins, D. L., Villemure, J.-G., Leblanc, R., Olivier, A., … Arnold, D. L. (1996). Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Medicine, 2(3), 323-325. doi:10.1038/nm0396-323
Poptani, H., Kaartinen, J., Gupta, R. K., Niemitz, M., Hiltunen, Y., & Kauppinen, R. A. (1999). Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. Journal of Cancer Research and Clinical Oncology, 125(6), 343-349. doi:10.1007/s004320050284
Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39(1), 1-40. doi:10.1016/s0079-6565(00)00036-4
Ye, C.-Z., Yang, J., Geng, D.-Y., Zhou, Y., & Chen, N.-Y. (2002). Fuzzy rules to predict degree of malignancy in brain glioma. Medical & Biological Engineering & Computing, 40(2), 145-152. doi:10.1007/bf02348118
Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315
Simonetti, A. W., Melssen, W. J., van der Graaf, M., Postma, G. J., Heerschap, A., & Buydens, L. M. C. (2003). A Chemometric Approach for Brain Tumor Classification Using Magnetic Resonance Imaging and Spectroscopy. Analytical Chemistry, 75(20), 5352-5361. doi:10.1021/ac034541t
Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010
Provencher, S. W. (1993). Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672-679. doi:10.1002/mrm.1910300604
Somorjai, R. L., Nikulin, A. E., Pizzi, N., Jackson, D., Scarth, G., Dolenko, B., … Smith, I. C. P. (1995). Computerized Consensus Diagnosis: A Classification Strategy for the Robust Analysis of MR Spectra. I. Application to1H Spectra of Thyroid Neoplasms. Magnetic Resonance in Medicine, 33(2), 257-263. doi:10.1002/mrm.1910330217
Somorjai, R. L., Dolenko, B., Nikulin, A. K., Pizzi, N., Scarth, G., Zhilkin, P., … Brière, K. M. (1996). Classification of1H MR spectra of human brain neoplasms: The influence of preprocessing and computerized consensus diagnosis on classification accuracy. Journal of Magnetic Resonance Imaging, 6(3), 437-444. doi:10.1002/jmri.1880060305
Huang, Y., Lisboa, P. J. G., & El-Deredy, W. (2002). Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection. Statistics in Medicine, 22(1), 147-164. doi:10.1002/sim.1321
Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001
Kelm, B. M., Menze, B. H., Zechmann, C. M., Baudendistel, K. T., & Hamprecht, F. A. (2006). Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: Pattern recognition vs quantification. Magnetic Resonance in Medicine, 57(1), 150-159. doi:10.1002/mrm.21112
Suykens, J. A. K., & Vandewalle, J. (1999). Neural Processing Letters, 9(3), 293-300. doi:10.1023/a:1018628609742
Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares Support Vector Machines. doi:10.1142/5089
Devos, A., Simonetti, A. W., van der Graaf, M., Lukas, L., Suykens, J. A. K., Vanhamme, L., … Van Huffel, S. (2005). The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. Journal of Magnetic Resonance, 173(2), 218-228. doi:10.1016/j.jmr.2004.12.007
Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104
Marshall, I., Higinbotham, J., Bruce, S., & Freise, A. (1997). Use of voigt lineshape for quantification ofin vivo1H spectra. Magnetic Resonance in Medicine, 37(5), 651-657. doi:10.1002/mrm.1910370504
Simonetti, A. ., Melssen, W. ., van der Graaf, M., Heerschap, A., & Buydens, L. M. . (2002). Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction. Journal of Magnetic Resonance, 159(2), 151-157. doi:10.1016/s1090-7807(02)00102-7
Tong, Z., Yamaki, T., Harada, K., & Houkin, K. (2004). In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magnetic Resonance Imaging, 22(5), 735-742. doi:10.1016/j.mri.2004.02.006
FISHER, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x
Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.1007/bf00058655
Garczarek UM. Classification rules in standardized partition spaces, Ph.D. Thesis, University of Dortmund, 2002.
Sundin, T., Vanhamme, L., Van Hecke, P., Dologlou, I., & Van Huffel, S. (1999). Accurate Quantification of 1H Spectra: From Finite Impulse Response Filter Design for Solvent Suppression to Parameter Estimation. Journal of Magnetic Resonance, 139(2), 189-204. doi:10.1006/jmre.1999.1782
Hochberg, Y., & Tamhane, A. C. (Eds.). (1987). Multiple Comparison Procedures. Wiley Series in Probability and Statistics. doi:10.1002/9780470316672
Chuan Lu, Devos, A., Suykens, J. A. K., Arus, C., & Van Huffel, S. (2007). Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis. IEEE Transactions on Information Technology in Biomedicine, 11(3), 338-347. doi:10.1109/titb.2006.889702
[-]