- -

Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra

Mostrar el registro completo del ítem

Luts, J.; Poullet, J.; Garcia-Gomez, JM.; Heerschap, A.; Robles, M.; Suykens, JA.; Van Huffel, S. (2008). Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magnetic Resonance in Medicine. 60(2):288-298. https://doi.org/10.1002/mrm.21626

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151315

Ficheros en el ítem

Metadatos del ítem

Título: Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra
Autor: Luts, Jan Poullet, Jean-Baptiste Garcia-Gomez, Juan M Heerschap, Arend Robles, Montserrat Suykens, Johan A.K. Van Huffel, Sabine
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] This study examines the effect of feature extraction methods prior to automated pattern recognition based on magnetic resonance spectroscopy (MRS) for brain tumor diagnosis. Since individual inspection of spectra is ...[+]
Palabras clave: Brain tumors , Feature extraction , Classification , Decision support system (DSS) , Magnetic resonance spectroscopy (MRS) , Magnetic resonance spectroscopic imaging (MRSI)
Derechos de uso: Cerrado
Fuente:
Magnetic Resonance in Medicine. (issn: 0740-3194 )
DOI: 10.1002/mrm.21626
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mrm.21626
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP6/019279-2/EU
...[+]
info:eu-repo/grantAgreement/EC/FP6/019279-2/EU
info:eu-repo/grantAgreement/EC/FP6/508803/EU/Computational intelligence for Bio-pattern analysis in support of eHealthcare/BIOPATTERN/
info:eu-repo/grantAgreement/EC/FP5/IST-1999-10310/EU/International Network for Pattern Recognition of Tumours using Magnetic Resonance/INTERPRET/
info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/
info:eu-repo/grantAgreement/EC/FP6/503094/EU/WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLIMIC DATA/ETUMOUR/
info:eu-repo/grantAgreement/ESA//Prodex-8 C90242/
info:eu-repo/grantAgreement/BELSPO//IUAP P6%2F04/
info:eu-repo/grantAgreement/FWO//G.0360.05/
info:eu-repo/grantAgreement/FWO//G.0519.06/
info:eu-repo/grantAgreement/FWO//G.0341.07/
info:eu-repo/grantAgreement/FWO//G.0321.06/
info:eu-repo/grantAgreement/FWO//G.0302.07/
info:eu-repo/grantAgreement/Belgian Federal Government//IUAP IV-02/
info:eu-repo/grantAgreement/Belgian Federal Government//IUAP V-22/
[-]
Agradecimientos:
The authors thank the Institute for Molecules and Materials, Analytical Chemistry, Chemometrics Research Department of the Radboud University Nijmegen for preprocessing the MRSI data. Margarida Julia-Sape is gratefully ...[+]
Tipo: Artículo

References

Preul, M. C., Caramanos, Z., Collins, D. L., Villemure, J.-G., Leblanc, R., Olivier, A., … Arnold, D. L. (1996). Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Medicine, 2(3), 323-325. doi:10.1038/nm0396-323

Poptani, H., Kaartinen, J., Gupta, R. K., Niemitz, M., Hiltunen, Y., & Kauppinen, R. A. (1999). Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. Journal of Cancer Research and Clinical Oncology, 125(6), 343-349. doi:10.1007/s004320050284

Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39(1), 1-40. doi:10.1016/s0079-6565(00)00036-4 [+]
Preul, M. C., Caramanos, Z., Collins, D. L., Villemure, J.-G., Leblanc, R., Olivier, A., … Arnold, D. L. (1996). Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Medicine, 2(3), 323-325. doi:10.1038/nm0396-323

Poptani, H., Kaartinen, J., Gupta, R. K., Niemitz, M., Hiltunen, Y., & Kauppinen, R. A. (1999). Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. Journal of Cancer Research and Clinical Oncology, 125(6), 343-349. doi:10.1007/s004320050284

Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39(1), 1-40. doi:10.1016/s0079-6565(00)00036-4

Ye, C.-Z., Yang, J., Geng, D.-Y., Zhou, Y., & Chen, N.-Y. (2002). Fuzzy rules to predict degree of malignancy in brain glioma. Medical & Biological Engineering & Computing, 40(2), 145-152. doi:10.1007/bf02348118

Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315

Simonetti, A. W., Melssen, W. J., van der Graaf, M., Postma, G. J., Heerschap, A., & Buydens, L. M. C. (2003). A Chemometric Approach for Brain Tumor Classification Using Magnetic Resonance Imaging and Spectroscopy. Analytical Chemistry, 75(20), 5352-5361. doi:10.1021/ac034541t

Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010

Provencher, S. W. (1993). Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672-679. doi:10.1002/mrm.1910300604

Somorjai, R. L., Nikulin, A. E., Pizzi, N., Jackson, D., Scarth, G., Dolenko, B., … Smith, I. C. P. (1995). Computerized Consensus Diagnosis: A Classification Strategy for the Robust Analysis of MR Spectra. I. Application to1H Spectra of Thyroid Neoplasms. Magnetic Resonance in Medicine, 33(2), 257-263. doi:10.1002/mrm.1910330217

Somorjai, R. L., Dolenko, B., Nikulin, A. K., Pizzi, N., Scarth, G., Zhilkin, P., … Brière, K. M. (1996). Classification of1H MR spectra of human brain neoplasms: The influence of preprocessing and computerized consensus diagnosis on classification accuracy. Journal of Magnetic Resonance Imaging, 6(3), 437-444. doi:10.1002/jmri.1880060305

Huang, Y., Lisboa, P. J. G., & El-Deredy, W. (2002). Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection. Statistics in Medicine, 22(1), 147-164. doi:10.1002/sim.1321

Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001

Kelm, B. M., Menze, B. H., Zechmann, C. M., Baudendistel, K. T., & Hamprecht, F. A. (2006). Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: Pattern recognition vs quantification. Magnetic Resonance in Medicine, 57(1), 150-159. doi:10.1002/mrm.21112

Suykens, J. A. K., & Vandewalle, J. (1999). Neural Processing Letters, 9(3), 293-300. doi:10.1023/a:1018628609742

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares Support Vector Machines. doi:10.1142/5089

Devos, A., Simonetti, A. W., van der Graaf, M., Lukas, L., Suykens, J. A. K., Vanhamme, L., … Van Huffel, S. (2005). The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. Journal of Magnetic Resonance, 173(2), 218-228. doi:10.1016/j.jmr.2004.12.007

Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104

Marshall, I., Higinbotham, J., Bruce, S., & Freise, A. (1997). Use of voigt lineshape for quantification ofin vivo1H spectra. Magnetic Resonance in Medicine, 37(5), 651-657. doi:10.1002/mrm.1910370504

Simonetti, A. ., Melssen, W. ., van der Graaf, M., Heerschap, A., & Buydens, L. M. . (2002). Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction. Journal of Magnetic Resonance, 159(2), 151-157. doi:10.1016/s1090-7807(02)00102-7

Tong, Z., Yamaki, T., Harada, K., & Houkin, K. (2004). In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magnetic Resonance Imaging, 22(5), 735-742. doi:10.1016/j.mri.2004.02.006

FISHER, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x

Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.1007/bf00058655

Garczarek UM. Classification rules in standardized partition spaces, Ph.D. Thesis, University of Dortmund, 2002.

Sundin, T., Vanhamme, L., Van Hecke, P., Dologlou, I., & Van Huffel, S. (1999). Accurate Quantification of 1H Spectra: From Finite Impulse Response Filter Design for Solvent Suppression to Parameter Estimation. Journal of Magnetic Resonance, 139(2), 189-204. doi:10.1006/jmre.1999.1782

Hochberg, Y., & Tamhane, A. C. (Eds.). (1987). Multiple Comparison Procedures. Wiley Series in Probability and Statistics. doi:10.1002/9780470316672

Chuan Lu, Devos, A., Suykens, J. A. K., Arus, C., & Van Huffel, S. (2007). Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis. IEEE Transactions on Information Technology in Biomedicine, 11(3), 338-347. doi:10.1109/titb.2006.889702

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem